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We present variational and Hamiltonian formulations of incompressible fluid dynamics with free
surface and nonvanishing odd viscosity. We show that within the variational principle the odd
viscosity contribution corresponds to geometric boundary terms. These boundary terms modify
Zakharov’s Poisson brackets and lead to a new type of boundary dynamics. The modified bound-
ary conditions have a natural geometric interpretation describing an additional pressure at the free
surface proportional to the angular velocity of the surface itself. These boundary conditions are be-
lieved to be universal since the proposed hydrodynamic action is fully determined by the symmetries
of the system.

Introduction. Variational principle in hydrodynam-
ics have a long history. We refer to Refs. [1, 2] and ref-
erences therein for an introduction to the topic. In par-
ticular, the Luke’s variational principle (LVP) is a vari-
ational principle of an inviscid and incompressible fluid
with a free surface [3, 4]. LVP provides both bulk hy-
drodynamic equations for an irrotational flow as well as
kinematic and dynamic boundary conditions at the free
surface boundary [4]. Such principle was later extended
to include surface tension and bulk vorticity (for a recent
summary see [5]). In this letter, we present a further ex-
tension of LVP which accounts for the presence of odd
viscosity in isotropic two-dimensional fluids with broken
parity.

In three dimensions, parity odd terms in the viscos-
ity tensor were known for a long time in the context of
plasma in a magnetic field [6] and in hydrodynamic the-
ories of superfluid He-3A [7], where the fluid anisotropy
plays a major role. In two dimensions however the odd
viscosity is compatible with isotropy of the fluid [8]. The
odd viscosity is the parity violating non-dissipative part
of the stress-strain rate response of a two-dimensional
fluid. The recent interest in odd viscosity is motivated
by the seminal paper by Avron, Seiler, and Zograf [9]
where it was shown that, in general, quantum Hall states
have non-vanishing odd viscosity. The role of odd viscos-
ity (a.k.a. Hall viscosity) in the context of quantum Hall
effect has been an active area of research [10–33], but is
out of the scope of this work.

In the Ref. [8], Avron has initiated the search for odd
viscosity effects in classical 2D hydrodynamics. These
effects are subtle in the case when the classical two-
dimensional fluid is incompressible. Recent works have
outlined some of observable consequences of the odd vis-
cosity for incompressible flows [34–39]. In particular, in
Ref. [39] the equations governing the Hamiltonian dy-
namics of surface waves were derived in the case where
bulk vorticity is absent.

Let us start by summarizing the main equations of an

incompressible fluid dynamics with odd viscosity. In the
following we assume that the fluid density is constant
and take it as unity. We also neglect all thermal effects.
Then, the hydrodynamic equations are the incompress-
ibility condition and the Euler equation

∇ · v = 0 , (1)

∂tv + (v ·∇)v = ∇⊗ T . (2)

Here, v(x, t) is a two-component velocity vector field and
T is the stress tensor of the fluid. In components the
r.h.s. of the Euler equation (2) reads (∇⊗ T )i = ∇jTij .
In flat space and in Cartesian coordinates, the stress ten-
sor assumes the following form

Tij = −δijp+ νo(∂iv
∗
j + ∂∗i vj) . (3)

The first term of (3) is standard and describes the contri-
bution to the stress from isotropic fluid pressure p. The
second term, however, is quite different from the conven-
tional dissipative shear viscosity νe(∂ivj + ∂jvi) (here νe
is shear or “even” viscosity coefficient). The last term of
(3), instead, is the contribution of the odd viscosity, with
νo being the kinematic odd viscosity coefficient. Differ-
ently from νe, we can assign either sign to the odd vis-
cosity νo, since it multiplies a dissipationless term. In (3)
and in the following we use the “star operation” so that
the vector a∗ is the vector a rotated 90◦ clockwise or in
components a∗i ≡ εijaj . This operation explicitly breaks
parity and a non-vanishing νo is only allowed in parity
breaking fluids.

Euler equation (2) with the stress tensor (3) takes the
form of the Navier-Stokes equation with odd viscosity
term replacing the conventional viscosity term

∂tv + (v ·∇)v = −∇p+ νo∆v∗ . (4)

Bulk hydrodynamic equations (1) and (4) must be sup-
plemented by boundary conditions. For a free surface
we should use one kinematic and two dynamic boundary
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conditions

(∂tΓ)n = vn

∣∣∣
Γ
, (5)

Tijnj

∣∣∣
Γ

= 0 , (6)

where n is the unit vector normal to the free 1d sur-
face Γ = ∂M of the 2d fluid domain M. The kinematic
boundary condition (KBC), Eq. (5), states that the ve-
locity of the free surface in its normal direction is equal
to the normal component of the velocity flow taken at
the surface. The set of two dynamical boundary condi-
tions (DBC) given by (6) imposes that both components
of stress force acting on the segment of the surface van-
ish. These conditions are appropriate for interfaces with
vacuum or air, assuming that the latter cannot maintain
non-vanishing forces on the surface of the fluid.

For a rather general class of fluid flows it is not pos-
sible to satisfy both DBC (6) with the stress tensor (3)
by smooth velocity configurations. A singular bound-
ary layer is formed. One can see it, for example, in a
linear approximation [39] and the phenomenon is very
similar to a formation of a boundary layer for fluid with
infinitesimal shear viscosity [40]. A non-vanishing shear
viscosity νe or finite compressibility, characterized by a
finite sound velocity vs result in a finite thickness of the
boundary layer proportional to

√
νe [39] or to 1/vs [41],

respectively. If one assumes that at least for finite times
the boundary layer is stable and very thin, the motion of
the fluid surface should be defined by effective boundary
conditions imposed on the interior part of the fluid. Col-
loquially speaking, the latter boundary conditions can
be obtained by “integrating out” boundary layer. As a
result, instead of two independent DBC (6), one should
consider a single effective normal dynamic boundary con-
dition

p̃
∣∣∣
Γ
≡ p− νoω

∣∣∣
Γ

= 2νo∂svn , (7)

where ∂svn = −n∗i ∂ivn is the derivative of normal veloc-
ity along the boundary and we introduced a notation p̃
– pressure modified by vorticity ω = ∂iv

∗
i .

While the precise way in which the tangent stress part
of DBC (6) is satisfied depends on the exact structure of
the boundary layer, here we show that the effective nor-
mal stress boundary condition is universal and is given
by (7). We obtain this universal statement by taking the
variational principle for an ideal incompressible fluid and
modifying it by adding a boundary term which is low-
est order in gradient expansion, breaks parity but pre-
serves other symmetries of the system. We show that
this boundary term produces (7) justifying the expecta-
tion of universality.

Let us start by rewriting (4) as

∂tv + (v ·∇)v = −∇p̃ (8)

using the incompressibility of the fluid (1). The equa-
tion (8) is indistinguishable from the conventional Euler

equation [42]. Therefore, we can start from the Luke’s
variational principle to produce the bulk hydro equations
together with perfect fluid boundary conditions and look
for boundary corrections to LVP to obtain the modified
DBC on the fluid which are in agreement with (7).

In contrast with [39], here we do not use any expan-
sions in νe and our results do not rely on small surface
angle approximations or on any assumption about the
structure of the boundary layer.

Luke’s variational principle. Let us start from
the simplest case of the incompressible potential fluid
flow, that is, v = ∇θ. Luke’s variational principle is
written in terms of the velocity potential θ as follows

SM = −
ˆ
dt

ˆ
M
d2x

(
∂tθ +

1

2
(∂iθ)

2

)
, (9)

where M is the 2D fluid domain with boundary [43].
Variation over θ in the bulk gives ∆θ = 0 – the incom-
pressibility condition. It is also straightforward to obtain
(8) as an identity if the modified pressure is identified as

p̃ = −∂tθ −
1

2
(∂iθ)

2 . (10)

Thus, the action (9) produces bulk equations (1,8) for a
potential flow. The bulk vorticity of such flow vanishes
identically ω = 0, implying p̃ = p. Let us now keep track
of boundary terms and assume that the bulk equation of
motion ∆θ = 0 is satisfied. Hence, varying (9) over the
velocity potential θ and over shape of the fluid domain
M, we obtain that all the non-trivial dynamics resides
on the fluid boundary and the action variation becomes,
for details see Supplemental Material (SM):

δSM =

ˆ
dt

ˆ
Γ

ds
[
δθ
(

(∂tΓ)n − ∂nθ
)

+ (δΓ)np̃
]
.(11)

Here Γ = ∂M is the spatial boundary of the fluid do-
main and s is the natural parameter along the boundary
so that dx2+dy2 = ds2. The variation over the boundary
values of the potential θ, i.e., the first term in the inte-
grand gives the KBC (5). The variation of the bound-
ary, i.e., the second term in the integrand in (11), gives
the vanishing pressure boundary condition p̃|Γ = 0 well
known for ideal fluids. The latter is markedly different
from the effective DBC (7) derived in [39]. Therefore,
while the variational principle (9) produces all equations
and boundary conditions for ideal fluid it does not ac-
count for the contributions from odd viscosity.

Boundary term. The main result of this work is
that in order to obtain the effective DBC (7), the follow-
ing boundary term should be added to LVP:

SΓ = νo

ˆ
dt

ˆ
Γ

ds (∂tΓ)nα , (12)

where s is the natural parameter along the boundary
and α is the angle between the surface and some fixed
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FIG. 1. The choice of normal n̂ and tangent ŝ unit vectors,
and the angle α for the case of half-plane geometry.

direction. Two remarks are in order: (i) The term (12)
is constructed purely from the boundary geometry data
and does not contain, e.g., velocity potential θ. This
means that the KBC (5) is not modified by this term.
(ii) Naively, (12) contains the preferred direction – the
reference axis for α. However, shifting α by constant
does not change (12) because

´
Γ
ds(∂tΓ)n = 0 due to the

KBC and incompressibility of the fluid. Later on we will
present a covariant way of writing (12).

Let us first consider the example of a half-plane geom-
etry when the fluid domain M is given by y ≤ h(x, t).
We choose the reference direction to be the x-direction
and write the angle α explicitly as α = tan−1 hx. In this
geometry ds =

√
1 + h2

x dx and for normal velocity of the
boundary we have

(∂tΓ)n =
ht√

1 + h2
x

= vn , (13)

so that Eq. (12) can be written as

SΓ = νo

ˆ
dt

ˆ
R
dxhtα = −νo

ˆ
dt

ˆ
R
dxhαt, (14)

with αt = hxt

1+h2
x

. Notice that in the last integral h dx

is the area element and αt is the angular velocity of the
surface element [44]. Computing the variation of (14) we
obtain (for details see SM):

δSΓ = −2νo

ˆ
dt

ˆ
Γ

ds (δΓ)n ∂s(∂tΓ)n , (15)

where (∂tΓ)n is given by (13) and (δΓ)n = δh/
√

1 + h2
x.

It is easy to see that the variation δ(SM + SΓ) over
(δΓ)n given by (11) and (15) gives the modified boundary
condition (7).

The same analysis can be repeated for the geometry
of a disk, i.e., simply connected droplet producing again
(15) [45]. Therefore, the variational principle with the
action

S = SM + SΓ (16)

defined in (9) and (12) produces incompressibility condi-
tion and the Euler equation (8) with KBC (5) and effec-
tive DBC (7). Explicitly, the full set of equations can be

written as

∆θ = 0 , x ∈M , (17)

∂nθ = (∂tΓ)n , x ∈ Γ , (18)

∂tθ +
1

2
(∂iθ)

2 = −2νo∂s(∂tΓ)n , x ∈ Γ . (19)

The obtained hydrodynamics describes incompressible
potential flows of the fluid with odd viscosity. This is the
main result of this work. We will remove the requirement
of potentiality of the flow later in this paper.

Effective contour dynamics. In the case of an ir-
rotational bulk flow, the full dynamics is completely de-
termined by the boundary motion. One can express equa-
tions (18,19) purely in terms of boundary fields using
(17). To do that we introduce the boundary field θ̃ = θ|Γ
or explicitly θ̃(s, t) = θ(x(s, t), y(s, t), t) with boundary Γ
given parametrically by functions of the natural param-
eter s along the boundary. We introduce the material
derivative at the boundary Dt = ∂t − (∂tΓ)s∂s and use
the identity

Dtθ̃ = ∂tθ|Γ + (∂nθ)(∂tΓ)n (20)

in (19) together with (18) and obtain

Dtθ̃ +
1

2
(∂sθ̃)

2 − 1

2
(∂tΓ)n

2
= −2νo∂s(∂tΓ)n . (21)

The equation (18) can also be expressed in terms of
boundary fields using (17). It has a form

(∂tΓ)n = D̂Nθ̃ , (22)

where D̂N is a Dirichlet to Neumann operator which de-
pends on the shape of the domain and can be expressed
in terms of the Dirichlet Green function of Laplace
operator[46] (see SM) as:

D̂N θ̃(s) =

ˆ
Γ

ds′
[
∂n∂n′G(x, x′)

]
θ̃(s′) . (23)

Equations (21-22) fully determine boundary dynamics
of the fluid domain. They can be considered as equations
for fields θ̃(s, t), x(s, t) and y(s, t) specifying both the
position of the boundary and the boundary value of the
potential. The reparametrization invariance of (21-22)
can be used to remove one of the degrees of freedom. For
example when the domain is given by y ≤ h(x, t) one can
rewrite (21-22) in terms of two fields θ̃(x, t) and h(x, t).

For this case one also can find D̂N as an expansion in h
and obtain [39]

D̂Nθ = −θ̃Hx −
[
hθ̃x + (hθ̃Hx )H

]
x

+ . . . , (24)

where the Hilbert transform is defined as fH(x) =

−́ dx′

π
f(x′)
x′−x .



4

Equations (21,22) are exact expressions given by the
action (16). The approximate versions of these equations
using (24) can be found in Ref. [39].

It is even easier to derive the effective one-dimensional
action corresponding to equations (21,22). We integrate
(16) by parts and use the bulk incompressibility of the
fluid ∆θ = 0 to obtain (for details see SM):

S1D =

ˆ
dt

[ˆ
Γ

ds (∂tΓ)n

(
θ̃ + νoα

)
−H

]
, (25)

H =
1

2

ˆ
Γ

ds
(
θ ∂nθ

)
Γ

=
1

2

ˆ
Γ

ds θ̃ D̂Nθ̃ . (26)

The Hamiltonian (26) is nothing but the total kinetic en-
ergy of the fluid given by the second term of (9). The
variations of (25) with respect to θ̃ and displacements
of the boundary produce equations of motion (21,22).
These variations can be computed using the Hadamard’s
variational formula, defined in [47, 48], however the most
straightforward way to calculate such variations is to
rewrite (26) in its local form as a two-dimensional in-
tegral.

Hamiltonian structure of contour dynamics.
Instead of studying the boundary dynamics for a gen-
eral fluid domain M, let us focus here on the particular
case when M is given by y ≤ h(x, t). Then, the action
(25) can be rewritten as

S1D =

ˆ
dt

[ˆ
R
dxht(θ̃ + νoα)−H

]
, (27)

where the Hamiltonian is given by (26), with ds =√
1 + h2

x dx. Let us turn our attention to the first term

of (27). We immediately see that h and θ̃ − νoα are
canonically conjugated variables so that Poisson brack-
ets become [49]

{h, h′} = 0 ,
{
θ̃, h′

}
= δ(x− x′) , (28){

θ̃, θ̃′
}

= νo

(
1

1 + h2
x

+
1

1 + h′x
2

)
∂xδ(x− x′) . (29)

Note that that the Poisson structure reduces to the well
known Zakharov’s Poisson structure [50] when νo = 0.
In the limit of small slopes hx � 1 the bracket (29)
was obtained in [39]. However, we emphasize here that
the Poisson structure (28,29) is an exact consequence of
the variational principle (16,9,14) without any additional
approximations.

Boundary term and geometry. The boundary
term (12) involves some arbitrariness in choosing a refer-
ence direction. In this paragraph, we aim to give a more
covariant way of this form and to provide a geometrical
picture associated with this boundary action. For that, it
is convenient to express SΓ in terms of differential forms.
Since n̂ = (sinα,− cosα), we can associate the deriva-
tives of the angle α to the boundary extrinsic curvature

one-form K = Kµdx
µ (for details, vide [29])

Kµ = ni∂µsi = ni∂µn
∗
i = ∂µα . (30)

Integrating by parts, we can rewrite (12) as

SΓ = −νo
ˆ
R×Γ

A ∧K , (31)

where A is a one-form whose exterior derivative is the
plane volume-form, that is, dA = dx ∧ dy. There is an
ambiguity in the definition of A, since A′ = A+ dΛ gives
us dA′ = dA. However, this gauge freedom does not
affect the boundary action (31). [51]

As an example let us consider A = −ydx for M given
by y ≤ h(x, t). Then, Eq. (31) reproduces (14).

For the droplet case,M is defined in polar coordinates
by r ≤ R(ϕ, t). If we take A = 1

2r
2 dϕ, we then obtain:

SΓ = −νo
2

ˆ
R×Γ

R2αt dt ∧ dϕ . (32)

Conclusions. We presented a variational principle
which accounts for odd viscosity effects in incompress-
ible fluid dynamics. The boundary part of the pro-
posed action is purely geometrical and fully determined
by the symmetries of the system. Therefore, we expect
the boundary condition (7) to be universal and indepen-
dent on the exact structure of the boundary layer, given
this boundary layer to be sufficiently thin. In partic-
ular, Eq. (7) reproduces the approximate equations ob-
tained in Ref. [39], which were derived in the limit of very
small, but nonvanishing shear viscosity. We also expect
the same boundary conditions assuming the boundary
layer structure to be determined by a finite compress-
ibility of the fluid. If the fluid is compressible, the odd
viscosity affects the flow of the fluid in the bulk as well.
While it is relatively straightforward to construct a vari-
ational principle for the compressible fluid its connection
to the incompressible limit is subtle and will be discussed
elsewhere.

The variational principle (16,12) gives hydrodynamic
equations for an incompressible fluid with odd viscosity
under the assumption that the tangent stress free surface
boundary conditions can be satisfied by a thin boundary
layer. This is not the case for all fluid flows. For exam-
ple, in the geometry of an expanding air bubble exact
solutions show strong dependence of the bulk flow on
shear viscosity [37]. Also, even if the assumption of a
thin boundary layer is satisfied initially it might break at
finite time [39]. The applicability of the thin boundary
layer assumption is beyond of the scope of this letter.

In the irrotational case, the degrees of freedom re-
side on the boundary and the effective dynamics is one-
dimensional and Hamiltonian, albeit non-local. The
derived Hamiltonian structure modifies the well known
Hamiltonian structure of incompressible ideal fluids [50].
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While, for simplicity, we presented here only the irro-
tational case, the generalization to more general flows,
with non-zero vorticity, is straightforward and requires
the addition of more Clebsch variables, vide SM for more
details.
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