
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Broadband Topological Slow Light through Higher
Momentum-Space Winding

Jonathan Guglielmon and Mikael C. Rechtsman
Phys. Rev. Lett. 122, 153904 — Published 18 April 2019

DOI: 10.1103/PhysRevLett.122.153904

http://dx.doi.org/10.1103/PhysRevLett.122.153904


Broadband topological slow light through higher momentum-space winding

Jonathan Guglielmon1 and Mikael C. Rechtsman1

1Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
(Dated: March 4, 2019)

Slow-light waveguides can strongly enhance light-matter interaction, but suffer from narrow band-
width, increased backscattering, and Anderson localization. Edge states in photonic topological in-
sulators resist backscattering and localization, but typically cross the bandgap over a single Brillouin
zone, meaning that slow group velocity implies narrow-band operation. Here we show theoretically
that this can be circumvented via an edge termination that causes the edge state to wind many
times around the Brillouin zone, making it both slow and broadband.

When propagating through a medium, a pulse of light
can travel with a group velocity that is much slower than
its vacuum value [1–3]. This phenomenon of slow light
has been extensively studied due to its potential for ap-
plications ranging from optical buffers to enhanced light-
matter interactions (and thus nonlinearity) [1, 4–10]. A
well-known problem encountered in slow-light systems
arises from fabrication imperfections: as one decreases
the group velocity of the light, it becomes increasingly
sensitive to disorder, leading to significant backscatter-
ing, loss, and localization [11]. In recent years, signifi-
cant research effort has been dedicated to studying and
realizing photonic topological insulators [12–22]. These
systems possess chiral edge states that resist backscatter-
ing and localization in the presence of disorder, yielding
robust one-way waveguides. They, therefore, constitute
natural candidates for generating robust slow light. Ad-
ditionally, in contrast to typical slow-light systems, which
require special designs to avoid reflections from the slow-
light interface [23], chiral edge states will automatically
exhibit complete transmission between topological fast-
light and topological slow-light regions, independent of
the slow-light group index and the details of the inter-
face.

In many applications, the usefulness of a slow-light sys-
tem depends crucially on its bandwidth which, ideally,
should be large so that the light can be slowed over a
large range of frequencies [9]. In topological systems, a
typical edge termination—such as a zig-zag edge of a hon-
eycomb lattice—produces an edge mode that crosses the
bulk bandgap over a single Brillouin zone. As a result,
reducing the group velocity of the edge mode requires
either slowing the mode only in the vicinity of a given
energy (e.g., mid-gap) [24] or reducing the bandgap (see
Fig. 1 (a)). In both cases, the reduced group velocity
comes at the expense of bandwidth. Additionally, in the
latter case, the reduced bandgap means that the exis-
tence of the edge mode will be more sensitive to disorder
since disorder strong enough to close the bandgap can
induce a topological phase transition.

In this letter, we demonstrate that, by engineering
the edge termination, a topological edge mode can be
made to wind many times around the Brillouin zone as
it crosses the bandgap, thereby generating a slow edge

mode over a large range of frequencies. The number of
times the edge mode winds is determined by the depth of
the modification of the edge termination measured into
the bulk. In the direction parallel to the edge, the termi-
nation does not expand the size of unit cell and, therefore,
generates multiple windings in a manner distinct from
simple band folding. Since the mode is slowed without re-
ducing the bulk bandgap, its existence remains protected
against strong disorder. The ability to slow the mode
without reducing its bandwidth is enabled by the funda-
mentally 2D nature of the system, as different frequencies
reside at different depths in the structure. As a result,
the minimal group velocity attainable at a fixed band-
width is determined by the system size in the direction
orthogonal to the direction of propagation. In contrast
to a topological slow-light system that utilizes a stan-
dard edge termination—where the 2D footprint of the
bulk may be viewed as a drawback, requiring an unnec-
essarily large region to support a 1D guided mode—our
proposed structure makes use of this 2D region to enable
wideband operation.

Designing the edge termination requires specifying a
set of parameters that can be tuned along the edge.
The implementation of the photonic topological insula-
tor—for example, whether it is realized using magneto-
optics [12, 13], modulated resonators [16, 25], or optome-
chanics [21]—will determine this set of tunable degrees
of freedom. The central observation of this letter, how-
ever, is not restricted to a specific implementation but
rather is generally applicable to systems containing chi-
ral edge states. We, therefore, avoid assuming a spe-
cific photonic implementation and instead conceptually
demonstrate the features of our proposal in the Haldane
model [26].

We begin with the Haldane model defined on a honey-
comb lattice with real first-neighbor couplings and com-
plex second-neighbor couplings. We set the inversion
symmetry breaking mass to M = 0 and the phases for
the second-neighbor couplings to φ = π/2, with positive
phases assigned to counter-clockwise hopping (see Fig.
1). We denote the magnitudes of the first-neighbor and
second-neighbor couplings by c and c′, respectively. For
definiteness, we take c′ = 1

10c. We denote the lattice
constant by a and the lattice vectors by R1 = a(1, 0)
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FIG. 1. Panel (a) compares band structures for different methods of generating a slow topological edge state. The first two
methods slow the edge state over a narrow range of energies while the third method yields a slow edge state with a large
bandwidth. Panels (b) and (c) show how the third method can be implemented in the Haldane model. Panel (b) illustrates
the edge termination, with wavy red lines indicating reduced nearest-neighbor couplings. These couplings are reduced by a
factor that begins at ρ0 at the edge and linearly tapers to a final value ρf . Up to these factors, the nearest-neighbor coupling
pattern repeats n times under translation by 3R2 before terminating into the bulk (shown is the case n = 2). Second-neighbor
couplings (not shown) are rescaled using a simple linear taper (see text). As indicated in the upper right corner of the panel,
the direction of positive phase hopping for the second-neighbor couplings is taken to be counter-clockwise. Panel (c) shows the
resulting band structures. As n is increased, the edge state winds an increasing number of times around the Brillouin zone as it
crosses the bandgap. For clarity, we have only structured the lower edge so that only the bottom-localized edge mode exhibits
an increased winding.

and R2 = a( 1
2 ,
√
3
2 ). The non-zero value for φ places the

system in a topologically non-trivial phase with Chern
number C = 1 so that opening the boundaries of the sys-
tem produces a topological edge mode that crosses the
bulk bandgap as the momentum parallel to the edge is
swept across the Brillouin zone. We will consider a hor-
izontal strip geometry that is periodic in the x-direction
and finite in the y-direction, terminated on zig-zag edges.
We choose coordinates such that the lowest site resides
at y = 0. We then modify the Hamiltonian in the vicin-
ity of the edge by tailoring the couplings to control the
behavior of the edge mode. For simplicity, we will leave
the upper edge of the structure unchanged and only in-
troduce modifications to the lower edge.

When structuring the edge termination, there is sig-
nificant freedom available regarding the details of its de-
sign. A very simple edge termination can be constructed
by beginning at a specified depth in the bulk and lin-
early reducing the couplings from their standard value
in the bulk to zero at the edge. Here, the distance over
which the couplings are reduced controls the number of
times the edge mode winds around the Brillouin zone.
The resulting edge mode, however, will deviate signifi-
cantly from the ideal linear dispersion that is important
for slow light applications. Below we describe a slightly
more complex edge termination that generates an im-
proved dispersion and serves as a good seed for further
numerical optimization. We emphasize, however, that

this structure should not be viewed as being fundamen-
tally preferred, as one can also design other edge termi-
nations that produce similar results.

To construct the edge termination, we pattern the
nearest-neighbor couplings near the edge in the way illus-
trated by Fig. 1(b). In particular, we reduce a subset of
the couplings—those indicated in the figure by wavy red
lines—by a factor ρ(y) that depends on the height, y, of
the link center for the neighbor pair (i.e., c→ ρ(y)c). The
pattern alternately rescales horizontal and vertical cou-
plings, while interspersing regions in which the couplings
are left unchanged. Along the horizontal direction, the
pattern maintains full R1 periodicity. Up to the values
of the rescaling factors, the pattern repeats after transla-
tion by S = 3R2. After n repetitions along S, the pattern
terminates into the bulk of the standard Haldane model
(i.e., with all nearest-neighbor couplings set to c). The
resulting edge termination, therefore, extends to a depth
of nS into the bulk. As we will see shortly, the value of
n determines the number of times the edge mode winds
around the Brillouin zone.

We choose the rescaling function, ρ(y), so that cou-
plings residing close to the edge are reduced more than
couplings residing deeper in the bulk. We take the rescal-
ing factor to begin at a value ρ0 on the edge and in-
crease linearly to a final value ρf before terminating into
the bulk. Defining y0 and yf as the y-coordinates of
the link centers for the first and last rescaled nearest-
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FIG. 2. Conversion of bulk modes to edge modes under a
smooth transformation between the n = 0 and n = 1 edge
terminations. Panel (a) shows the n = 0 band structure,
highlighting in the red box the region that is magnified in the
neighboring plots. Panels (b)–(d) show the transformation of
the bands as λ is swept from 0 to 1. A small system size is used
to clearly distinguish distinct bands. The two panels located
to the right of each band structure show the y-dependence of
the eigenstate intensity profiles (over a single strip-geometry
unit cell) for the eigenstates |E1〉 and |E2〉 highlighted in the
band structure. As λ is increased, a bulk mode is pulled into
the gap and becomes localized on the bottom edge, allowing it
to cross the top-localized mode without hybridizing. A similar
process occurs simultaneously for a bulk band residing in the
region E < 0 (not shown). The resulting bottom-localized
edge mode winds around the Brillouin zone two additional
times as it crosses the gap.

neighbor couplings (that is, y0 = a
4
√
3

and yf = nSy− 2a√
3
)

we take ρ(y) =
(
ρf−ρ0
yf−y0

)
(y − y0) + ρ0. Nearest-neighbor

couplings residing beyond yf are not rescaled and are set
to their bulk value c.

Similarly, we rescale next-neighbor couplings by a fac-
tor ρ′(y) which begins at the edge at ρ′0, ends in the
bulk at ρ′f , and is linearly tapered in between. In
contrast to the nearest-neighbor couplings, every next-
neighbor coupling near the edge is rescaled (i.e., no
couplings are skipped, as they are for the nearest-
neighbor pattern). The first rescaled next-neighbor
coupling resides at y′0 = 0, the final rescaled next-
neighbor coupling resides at y′f = nSy, and the rescal-
ing function for the next-neighbor couplings is given by

ρ′(y) =
(
ρ′f−ρ

′
0

y′f−y
′
0

)
(y − y′0) + ρ′0. Next-neighbor couplings

with y > y′f are set to their bulk value c′. Tuning
the parameters (ρ0, ρf ) and (ρ′0, ρ

′
f ) allows us to con-

trol the dispersion of the edge mode. In the remain-
der of this letter, we will set (ρ0, ρf ) = (0.05, 0.28) and
(ρ′0, ρ

′
f ) = (0.15, 1.00). These values were chosen to pro-

duce a simple edge dispersion exhibiting clear additional
windings around the Brillouin zone.

With the rescaling functions set as described above,
the number of repetitions, n, determines the number of
times the edge mode winds around the Brillouin zone
as it crosses the bandgap. A standard zig-zag edge is
reproduced by taking n = 0. Sending n to n + 1 causes
the edge mode to wind two additional times (i.e., ∆kx →
∆kx + 4π

a ) around the Brillouin zone as it crosses the
bandgap. The resulting band structures for n = 0, 1, 2, 3
are shown in Fig. 1(c).

For the n = 0 edge termination (a standard zig-
zag edge), the edge modes associated with the up-
per and lower edges together form a continuously con-
nected pair of bands. To understand how this pair
of bands can develop additional windings, we study
how the edge mode transforms under a smooth inter-
polation between the n = 0 and n = 1 termina-
tions. We define H0(kx) and H1(kx) to be the Bloch
Hamiltonians for the n = 0 and n = 1 cases, respec-
tively, and define a one-parameter family of Hamilto-
nians Hλ(kx) = (1− λ)H0(kx) + λH1(kx) that smoothly
interpolates between H0(kx) and H1(kx) as λ is varied
over the interval [0, 1]. In Fig. 2, we show a magnified
view of the resulting transformation. As λ is increased,
a bulk mode is pulled into the gap and approaches the
edge mode localized on the top edge (Fig. 2(c)). Typi-
cally, these modes would exhibit an avoided crossing due
to their spatial overlap. However, as the bulk mode is
pulled into the bandgap, it becomes localized on the bot-
tom edge, so that the overlap becomes exponentially sup-
pressed in the system size, allowing it to cross the top-
localized edge mode (Fig. 2(d)). A similar process si-
multaneously occurs for a bulk band residing below the
bandgap. As a result, the edge mode acquires two addi-
tional windings around the Brillouin zone.

As the number of windings increases, the edge mode
utilizes degrees of freedom that reside at increasing
depths in the bulk. To study how the edge mode eigen-
state profile varies as its energy is swept across the
bandgap, we first optimize the coupling pattern to min-
imize variations in the group velocity (see Supplemental
Material [27]) so that the bottom-localized edge mode
crosses each energy in the bandgap exactly once and each
energy is associated with a unique eigenstate (i.e., the op-
timization removes any non-monotonicity present in the
edge bands and gives them nearly linear dispersion). Fig-
ure 3 shows how the edge mode eigenstate profile changes
as the energy, E, is swept across the gap. The intensity
profile is shown over a single strip-geometry unit cell. For
simplicity, the intensities associated with the two sublat-
tices have been (additively) coarse-grained into a single
intensity profile. At mid-gap, E = 0, the edge mode
resides at the very edge of the structure. Away from
mid-gap, it moves deeper into the bulk, with increasing
depths occupied by the mode as the number of windings
is increased. Note, however, that even as the mode moves
into the bulk, it maintains a small cross-sectional mode
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FIG. 3. Edge mode eigenstate profile as a function of energy
for the optimized edge terminations. Each constant E slice
shows the y-dependence of the intensity distribution (over a
strip-geometry unit cell) of the edge state at energy E. Only
the 30 sites nearest to the edge are shown. The y-coordinates
are normalized to ay = Ry

2 and the energy E is normalized to
units of the bandgap so that E/E0 = ±1 correspond to the
bulk band edges. Separate panels are shown for the optimized
edge terminations defined by n = 2, 4, 6. As the number of
windings is increased, the edge mode utilizes degrees of free-
dom residing deeper in the bulk.

profile. This feature is important for achieving enhanced
light-matter interactions in a slow-light system.

In typical slow-light systems, a reduction in the group
velocity is accompanied by an increased sensitivity to fab-
rication imperfections so that light is more easily scat-
tered and localized by disorder. Topological edge states,
however, are known to resist localization and backscatter-
ing. To demonstrate how this feature applies to a topo-
logical slow-light device, we perform time-domain simula-
tions in which we launch a narrow-band pulse into a dis-
ordered slow-light region. We perform these simulations
both for a topological structure and for a topologically
trivial 1D array. For the topological structure, we use
the optimized edge terminations so that, in the absence
of disorder, the edge band has nearly linear dispersion.
For the trivial structure, we control the group velocity
by varying the nearest-neighbor coupling.

Defining v and v′ as the fast-light and slow-light group
velocities, respectively, we independently perform the
simulations for v/v′ = 9 and v/v′ = 18 (corresponding
to the optimized n = 1 and n = 2 edge terminations) us-
ing onsite disorder with a strength of 5% of the bandgap
of the topological structure. We describe these simu-
lations in the Supplemental Material [27]. The results
are shown in Fig. 4. The topological structure exhibits
a clear improvement, resisting the significant localization
and backscattering that increase in severity for the trivial
system as the group velocity is reduced. More generally,
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FIG. 4. Propagation of slow light in the presence of onsite
disorder. A pulse initially traveling in a fast-light region en-
ters and propagates through the slow-light region located be-
tween the dashed white lines. Row (a) shows the topological
case using the optimized edge terminations. The left and
right panels correspond to slowing factors of v/v′ = 9 and
v/v′ = 18, respectively. Each constant t slice shows the in-
tensity profile of the edge mode along the x-direction (the
direction of propagation). The time coordinate, t, is scaled
to units of the coupling time t0 = 1/c. To show the pulse
purely as a function of x, the intensities have been summed
over the strip-geometry unit cell, collapsing the y-dependence
of the pulse. Row (b) shows the corresponding results for a
topologically trivial 1D system.

for a wideband pulse, the topological system will display
a similar improvement, but the pulse shape will undergo
distortion due to disorder-induced dispersion.

In conclusion, we have shown that, by increasing an
edge state’s momentum-space winding, it can be slowed
without sacrificing bandwidth. For the resulting struc-
tures, the magnitude of the group velocity is decoupled
from the size of the bandgap and from the periodicity
along the propagation direction. The structures, there-
fore, circumvent the recently suggested limitation [28]
that the strength of the topological protection derived
from the size of the bandgap is tied to the maximal group
index.

For our proposed structure, the wideband nature of
the edge state may be viewed as a natural consequence
of slowing the mode in the presence of non-trivial topol-
ogy: due to the non-zero Chern number, the edge state
is required to fully traverse the bandgap so that, in re-
sponse to a reduction of the group velocity of all of the
in-gap states, new states are extracted from the bulk
and appended to the edge band to enable it to cross the
bandgap. The way that this is achieved is closely related
to the system’s dimensionality: the degrees of freedom
required to support a 1D wideband slow mode are ex-
tracted from the 2D reservoir of bulk states.

From the perspective of experimental implementation,
the edge termination must be designed using the degrees
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of freedom that can be tuned in the underlying photonic
topological insulator. This will require further studies
aimed at adapting our proposal to specific photonic sys-
tems. In photonic crystals that break time-reversal sym-
metry through magneto-optics [12, 13], one could, for
instance, engineer an edge termination by varying the
applied magnetic field in the vicinity of the edge or by fur-
ther patterning the positions and radii of the edge sites.
In proposals that utilize temporally modulated coupled
resonators [16, 25] or driven optomechanical cavities [21],
both the coupling amplitudes and the pattern of relative
modulation phases could be structured near the edge.
Our work motivates further studies of how these degrees
of freedom can be engineered along the edges of a system
to control the properties of topological edge states and,
in particular, to generate robust slow light.

M.C.R. acknowledges the National Science Founda-
tion under award number ECCS-1509546, the Charles E.
Kaufman Foundation, a supporting organization of the
Pittsburgh Foundation, and the Office of Naval Research
under YIP program, grant number N00014-18-1-2595.

[1] L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi,
Nature 397, 594 (1999).

[2] P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palingi-
nis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang,
Opt. Lett. 29, 2291 (2004).

[3] Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J.
McNab, Nature 438, 65 (2005).

[4] Y. Xu, R. K. Lee, and A. Yariv, J. Opt. Soc. Am. B 17,
387 (2000).
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