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Exceptional points (EPs) are singularities that arise in non-Hermitian physics. Current research
efforts focus only on systems supporting isolated EPs characterized by increased sensitivity to ex-
ternal perturbations, which makes them potential candidates for building next generation optical
sensors. On the downside, this feature is also the Achilles heel of these devices: they are very
sensitive to fabrication errors and experimental uncertainties. To overcome this problem, we intro-
duce a new design concept for implementing photonic EPs that combine the robustness required
for practical use together with their hallmark sensitivity. Particularly, our proposed structure ex-
hibits a hypersurface of Jordan EPs (JEPs) embedded in a larger space, and having the following
peculiar features: (1) A large class of undesired perturbations shift the operating point along the
exceptional surface (ES), thus leaving the system at another EP which explains the robustness;
(2) Perturbations due to back reflection/scattering force the operating point out of the ES, leading
to enhanced sensitivity. Importantly, our proposed geometry is relatively easy to implement using
standard photonics components and the design concept can be extended to other physical platforms
such as microwave or acoustics.

Exceptional points (EP) are peculiar singularities that
arise in non-Hermitian Hamiltonians when two or more
eigenstates coalesce [1–6]. The resultant reduction in the
eigenstate space dimensionality renders these points very
sensitive to any external perturbations. Current research
works in non-Hermitian and parity-time (PT) symmetric
physics [7, 8] have so far focused on systems supporting
isolated EPs in a reduced parameter space. This strategy
has allowed researchers to investigate certain important
aspects of non-Hermitian systems and gain insight into
their behavior [9–24]. This however comes at a price: iso-
lated EPs are very sensitive to unavoidable fabrication er-
rors or experimental uncertainty (e.g. small variation in
the experimental conditions). To better appreciate this
point, consider the current implementations of photonic
EPs based on PT-symmetric coupled elements [9–12] or
engineered back reflection [25–28]. In both of these ge-
ometries, which have been recently exploited to demon-
strate ultra-responsive optical sensors [28, 29], the design
parameters have to be tailored precisely in order to force
the system to operate at an EP. In the PT-symmetric
implementation [29], the resonant frequencies of the two
rings have to be identical; the gain/loss profiles have to
be exactly balanced; and the difference between the gain
and loss values has to match the coupling coefficient be-
tween the two resonators. Alternatively, in the single
ring implementation [25–28], the sizes and locations of
the nanoscatterers next to the ring have to be controlled
with high precision during the fabrication. To overcome
these difficulties, various research teams employ clever
techniques (such as micro-heaters and movable fiber tips,
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FIG. 1. A non-Hermitian photonic structure can combine ro-
bustness together with sensitivity if it exhibits a hypersurface
of exceptional points with the following properties: (1) Unde-
sired perturbations due to fabrication imperfections and ex-
perimental uncertainties shift the spectrum across the surface,
leaving the system at an EP; (2) Perturbations accounting for
the quantities to be measured force the spectrum out of the
surface, i.e. away from EPs.

tunable coupling, etc) in order to actively and contin-
uously tune the studied systems in the vicinity of the
EPs. Beyond these important proof-of-concept demon-
strations, it will be extremely useful for practical sensing
applications to advance new design concepts that decou-
ple the effects of fabrication errors and experimental un-
certainties from perturbations caused by measurements.

In this letter, we present a new non-Hermitian pho-
tonic structure that exhibits an exceptional hypersurface
(ES) embedded in a high-dimensional parameters space.
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FIG. 2. Schematic diagram of the proposed photonic struc-
ture that satisfies the criteria mentioned in Fig. 1. It consists
of a microring resonator coupled to a waveguide that has a
mirror on one side and reflectionless at the other end. The
relevant design parameters are indicated in the figure (see SM
for details). In the absence of any reflective perturbations, the
system exhibits an EP. Any variations of the coupling coeffi-
cients or the resonant frequency of the cavity will still leave
the system at an EP. On the other hand, if a nanoscatterer
(or any other form of reflective perturbations) comes to the
vicinity of the ring, it will introduce a bidirectional coupling
between the clockwise (CW) and counterclockwise (CCW)
waves and shift the system away from the EP which in turn
will leave a fingerprint on the emission spectrum of the system
(if used in the lasing regime) or the power scattering spectrum
(if operated in the amplification regime).

This, in turn, provides additional degrees of freedom that
can be exploited to combine robustness with enhanced
sensitivity. Particularly, robustness can be achieved if
the system’s response is tailored such that a large class
of fabrication errors and experimental uncertainties shift
the operating point along the ES. On the other hand,
enhanced sensitivity can arise if the perturbation due
to the measurements forces the spectrum away from the
ES, causing large splitting of the resonant frequency (as
compared to that associated with diabolic points (DP)
[30–36]). This generic concept is illustrated schemati-
cally in Fig. 1. Here we show that this concept can
be implemented by using standard photonic technology,
which paves the way towards practical applications of
non-Hermitian photonic sensors.

To this end, we consider the structure depicted
schematically in Fig. 2. It consists of a single micror-
ing resonator coupled to a waveguide. One end of this
waveguide is terminated by a mirror while the other end
is assumed to be reflectionless (see Supplementary Ma-
terial (SM) for the effect of finite small reflectivity [37]).
Within the context of coupled mode theory, the above
structure in the absence of the scatterer can be described

by the effective Hamiltonian:

i
d

dt

[
ãcw
ãccw

]
= HES

[
ãcw
ãccw

]
, HES =

[
ω0 − iγ 0
αµ2 ω0 − iγ

]
(1)

where ãcw,ccw are the field amplitudes of the clockwise
(CW) and counterclockwise (CCW) modes, ω0 is the res-
onant frequency, γ is the cavity loss rate which can be
decomposed into intrinsic absorption, radiation loss, and
loss to the waveguide (i.e. γ = γabs +γrad +µ2/2), and µ
quantifies the coupling rate between the resonator and
the waveguide. In addition, α = rm exp(i2φ3) where
rm is the field reflection coefficient at the mirror and
φ3 = βwL3. Here βw is the propagation constant of the
waveguide and the distances L3 are depicted in Fig. 2.
Note that the above form of the Hamiltonian does not
imply that the system is nonreciprocal, i.e. the trans-
mission between the input and out ports is the same if
the role of the two ports is reversed.

The eigenvalues of HES as written in the bases
exp(−iωt), together with the associated eigenvectors ã1,2
are given by:

ω1,2 = ω0 − iγ,
ã1,2 = (0, 1)T .

(2)

The spectrum of the Hamiltonian HES features an EP
with two identical eigenmodes characterized by a finite
CCW component and a null CW component. Impor-
tantly, this is even true for any value of ω0, γ and αµ2.
In other words, there is hypersurface spanned by all pos-
sible values of these parameters where the system remains
at an EP. For instance, if the fabricated system has extra
(less) loss, stronger (weaker) coupling to the waveguide
or a shift in its resonance frequency from the original
targeted values, the system will be still located at an
EP without the need for any external tuning. Only per-
turbations that introduce differential loss, frequency mis-
match or additional couling between the two modes (CW
and CCW) can affect the system performance. However,
these perturbations do not arise naturally in our pro-
posed design since any change in the size of the resonator
or its coupling to the waveguide will affect both modes
symmetrically [43]. This unique feature provides un-
precedented robustness that cannot be achieved in stan-
dard non-Hermitian systems that rely on isolated EPs
in the design parameter space. However, in the pres-
ence of a nanoscatterer located in the vicinity of the ring
resonator, the interaction between the scatterer and the
evanescent field of the optical modes introduces a bidirec-
tional coupling between the CW and CCW modes, which
are described by additional corrections of the same order
to both off-diagonal matrix elements of HES, say ε. If we
further assume that ε is much smaller than other matrix
elements, it is straightforward to show that the splitting
of the eigenfrequency is ∆ω ≡ |ω1 − ω2| ∼

√
ε. In stan-

dard waveguide-coupled microring resonators operating
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at a diabolic point, this splitting will be rather ε. Thus,
in addition to its robustness, the proposed system is ex-
pected to also provide enhanced sensitivity.

In order to put this discussion on a more solid ground
while at the same time elucidate on the relevant exper-
imental parameters, we study the above structure using
the scattering matrix method (SMM) [49–51]. Here we
assume that the system is probed via the waveguide by
a signal sin. We then proceed to calculate the output
signal sout as a function of the input frequency for differ-
ent levels of perturbation by a nanoscatterer, which we
quantify by its location as well as reflection/transmission
coefficients rp/tp, respectively (see Fig. 2 and SM for a
full list of parameters).

By doing so, we obtain (see SM for scattering matrix
method):

sout
sin

=
eiφ3tm[(1 + e2iφ)τ − eiφ(1 + τ2)tp]

1 + ei2φτ2 − 2eiφτtp − e2iφ′rmrpκ2
≡ N

D
, (3)

where φ = φ1 + φ2 and φ′ = φ2 + φ3, with φ1,2 = βrL1,2

and φ3 = βwL3. In general, the values of propagation
constants associated with the ring and straight waveg-
uides, βr,w, can be complex with the imaginary parts
accounting for the possible radiation and material loss as
well as the gain (loss due to coupling to the waveguide is
treated separately). For reasons that will be clear shortly,
we are particularly interested in the case of active devices
where the microring exhibits enough optical gain to bring
the system at or close to the lasing condition (for com-
pleteness we treat the passive case in SM [52]). Under
either of these conditions, the lasing or the transmission
spectrum (respectively) is dominated by the the poles of
the power scattering coefficient T = |sout/sin|2, or equiv-
alently the zeros of D. To characterize the performance
of the proposed structure, we thus study the behavior
of D as a function of the particle reflectivity rp and the
input frequency parametrized by φ (we do not take the
waveguide dispersion into account at this moment), i.e.
D ≡ D(rp, φ).

For any set of design parameters and a specific value
of rp, the lasing conditions is achieved for values of
φ ≡ φD satisfying the equation D(rp, φD) = 0, which

gives exp(iφ±D) = τ−1(tp ± i
√
r2p − exp(2iφ′)rmκ2rp).

The maximum frequency splitting ∆φ ≡ Re[φ+D − φ−D]
occurs when exp[2iRe(φ′)] = −1. As a side comment,
we note that Im[φD] = −κ2/2, which implies the lasing
threshold occurs when the gain is enough to compensate
for the radiation/material loss as well as the loss due
to coupling to the waveguide, as one would expect. By
writing r′m = rm × | exp(2iφ′)| we find:

∆φ = 2
√
r2p + r′mκ

2rp. (4)

In Eq. (4), r′mκ
2 is the effective unidirectional coupling

from CW mode to CCW mode. By noting that in our

systems, both rm and | exp(2iφ′)| = exp(−2Im[φ′]) are in
the order of unity (since the system is assumed to operate
below but close to the lasing threshold), we arrive at:

∆φEP ≈
{

2κ
√
rp, rp � κ2

2rp, rp � κ2
, (5)

∆φDP = 2rp. (6)

Equation (5) is the central result of this work. It con-
firms the existence of an operating regime (rp � κ2)
where the frequency splitting scales with the square root
function of the perturbation, which is the hallmark of en-
hanced sensitivity near a second-order EP. Beyond this
regime, the splitting is linear as in standard sensors oper-
ating at a diabolic point. Intuitively, as the perturbation
due to the scatterer shifts the system far away from the
EP, the extra sensitivity is lost. In comparison, as shown
by Eq. (6), which describes the same non-Hermitian sys-
tem in the absence of the mirror (i.e. operating at a DP),
the splitting is linear from the very beginning.

In the active scattering regime, when the gain brings
the system relatively close to the lasing point but remains
below the lasing threshold, the transmission peaks can be
obtained by solving Eq. (3). Not surprisingly, here also
the locations of the transmission peaks are dominated by
the zeros of D(rp, φ), which again results in a square-
root dependence of the frequency splitting as we have
confirmed numerically.

Having discussed the essential features of the proposed
structure, we now confirm our predictions by performing
two-dimensional(2D) full-wave Finite-Difference Time-
Domain (FDTD) simulations [55] using realistic material
platforms. Particularly, we study a 2D version of the
schematic shown in Fig. 2. It consists of a microring
resonator having a refractive index n2 = 1.45, a radius R
= 10 µm, and a width w = 0.8 µm. The ring is coupled
to a waveguide having the same material and width. The
edge-to-edge separation between the ring and the waveg-
uide is chosen to be d = 0.6 µm, corresponding to κ2 =
0.028. A mirror with reflectivity rm = 0.99 is introduced
at one end of the waveguide via a 50-nm-thick silver layer.
To simulate the perturbation induced by a nanoscatterer,
we use a disk assumed to be of the same material with
the waveguide and vary its radius in the simulation from
20 nm to 100 nm. The disk is located at 3 o’clock with
a fixed distance h = 0.1 µm from its center to the out-
side of the microring. Based on the chosen position of
the nanoscatterer, we set L3=10.075 µm, which results
in an optimal operation (defined by the maximum fre-
quency splitting and peak visibility) for a test particle
having a 30 nm radius. Finally, the background material
is assumed to be air of n1 = 1. In our simulations, the de-
vice is probed by a TE-polarized broad bandwidth pulse
with central frequency at f = 193.4 THz or equivalently
λ = 1550 nm (almost matching one of the longitudinal
modes of the microring) launched from the left side of
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FIG. 3. Finite difference time domain simulations for a system similar to that of Fig. 2. (a) and (b) plot the spectrum splitting
as a function of nanoscatterer size. Clearly, the EP-based structure demonstrates superior performance in terms of the splitting
magnitude and the visibility of the resonance peaks.
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FIG. 4. Sensitivity enhancement as a function of the nanoscatterer radius. Clearly the EP sensor has a better performance than
a sensor operating at a DP for smaller scatterer, making this device valuable for measuring small perturbations. In producing
the solid lines, we first used FDTD simulations to simulate subsystems of the full structure to extract the design parameters (for
example, using the waveguide and mirror only without the resonator to compute the mirror reflectivity; or the ring resonator
only and the scatterer to compute the scatterer reflectivity, etc). Next, we used these extracted parameters in our analytical
formulas (4-6) together with the definition of φ in order to produce the solid lines.

the waveguide. In order to isolate the relevant transmis-
sion peaks in our simulations, we used a dispersive gain
function as described in SM.

Figures 3(a) and (b) show the transmission spectrum
for the cases of EP and DP, respectively for the parame-
ters listed in the figure caption. Evidently, the EP-based
device exhibits a significant advantage, demonstrating
larger splitting and clear transmission peaks. Note that
the location of one transmission peak remains almost in-
variant while the other experience red-shift. This can be
explained by the scatterer-induced coupling between dif-
ferent wave components [34, 56]. A more quantitative
explanation based on perturbation theory is also pro-

vided in the SM [57]. Figure 4(a) plots a log-log scale
of the slopes characterizing the magnitude of the split-
ting, where the superior performance of EP is evident.
This conclusion is better illustrated in Fig. 4(b), which
depicts the enhancement factor (defined as the ratio of
the splitting in the EP case normalized by that of the DP
case) of the proposed sensor as a function of the nanoscat-
terer reflectivity rp when the scatterer size is varied from
20 nm to 100 nm [59]. These figures also demonstrate the
excellent agreement between the FDTD (square points)
and the scattering matrix method (solid lines).

In conclusion, we have proposed a new class of non-
Hermitian sensors that operate at exceptional surfaces
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as opposed to isolated exceptional points. This new
paradigm provides more degrees of freedom that can
be exploited to combine a certain degree of robustness
against fabrication tolerance (which is crucial for real-
life applications) together with the enhanced sensitiv-
ity associated with exceptional points. We also expect
our proposed system to demonstrate some robustness
against the type of thermal fluctuations studied recently
in [61] (see SM [62]). Interestingly, it was recently
shown that non-Hermitian Hamiltonians with unidirec-
tional coupling (i.e. similar to that used in our proposed
work) can exhibit superior performance even in the quan-
tum regime [64]. We anticipate that our results, together
with recent work on exceptional surface in photonic crys-
tals [65], will open a host of new possibilities for sensing
applications using practical non-Hermitian devices. Im-
portantly, the proposed design concept presented here
can be implemented in other physical platforms such as
acoustics or microwaves.

∗ Corresponding author: ganainy@mtu.edu
[1] W. D. Heiss and A. L. Sannino, J. Phys. A 23, 1167

(1990).
[2] A. I. Magunov, I. Rotter, and S. I. Strakhova, J. Phys.

B 32, 1669 (1999).
[3] W. D. Heiss, J. Phys. A 37, 2455 (2004).
[4] W. D. Heiss, J. Phys. A 45, 444016 (2012).
[5] I. Rotter, Phys. Rev. E 67, 026204 (2003).
[6] M. Müller and I. Rotter, J. Phys. A 41, 244018 (2008).
[7] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H.

Musslimani, S. Rotter, and D. N. Christodoulides, Nat.
Phys. 14, 11 (2018).

[8] L. Feng, R. El-Ganainy, and L. Ge, Nat. Photon. 11,
752 (2017).
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