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We dispersively couple a single trapped ion to an optical cavity to extract information about the
cavity photon-number distribution in a nondestructive way. The photon-number-dependent ac Stark
shift experienced by the ion is measured via Ramsey spectroscopy. We use these measurements first
to obtain the ion-cavity interaction strength. Next, we reconstruct the cavity photon-number dis-
tribution for coherent states and for a state with mixed thermal-coherent statistics, finding overlaps
above 99% with the calibrated states.

PACS numbers: 42.50.Pq, 42.50.Ar, 42.50.Lc, 42.50.Nn

Cavity quantum electrodynamics (cavity QED) pro-
vides a conceptually simple and powerful platform for
probing the quantized interaction between light and mat-
ter [1]. Early experiments opened a window into the
dynamics of coherent atom–photon interactions, first
through observations of collective Rabi oscillations and
vacuum Rabi splittings [2–5] and later at the single-atom
level [6–11]. More recently, building on measurements of
the cavity field via the atomic phase [12, 13], cavity pho-
ton statistics have been analyzed in experiments with
Rydberg atoms or superconducting qubits in microwave
resonators [14–17], culminating in the generation and sta-
bilization of nonclassical cavity field states [18–24]. These
experiments operate in a dispersive regime, in which in-
formation about the cavity field can be extracted via the
qubits with minimal disturbance to the field [1].

Dispersive experiments often operate in a regime in
which one photon induces a significant atomic phase
shift, the so-called strong pull regime [25]. However,
interesting physical phenomena have also been explored
with microwave cavities in the weak-pull regime, in which
the small phase shift allows partial information about
the atomic state to be acquired without collapse onto an
eigenstate. Examples include the observation of quantum
trajectories [26], the stabilization of Rabi oscillations via
quantum feedback [27], and the entanglement of remote
qubits [28].

In parallel, it was pointed out that the Jaynes-
Cummings Hamiltonian that describes cavity QED also
describes the interaction of light and ions in a harmonic
trapping potential [29]. This interaction underpins the
generation of nonclassical states of motion [30–33] and
the implementation of gates between trapped ions [34].
In analogy to the phase shifts experienced by qubits due
to the cavity field, ions experience quantized ac Stark
shifts due to their coupling to the harmonic trap po-
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tential [35]. These shifts have been characterized us-
ing techniques similar to those introduced in Ref. [12].
Here, we have transferred the principle of dispersive mea-
surement to an ion qubit coupled to a cavity. In con-
trast to experiments with flying Rydberg atoms, the ion
is strongly confined; in contrast to both Rydberg and
superconducting-qubit experiments, our cavity operates
in the optical regime.

We employ a single trapped 40Ca+ ion as a quantum
sensor [36] to extract information about cavity photons
without destroying them. Via Ramsey spectroscopy of
the ion, we measure the phase shift and dephasing of the
ion’s state, both of which result from the interaction of
the ion with the cavity field. The mean phase shift is pro-
portional to the mean cavity photon occupation number,
due to the ac Stark effect, and the dephasing is due to the
cavity photon state not being a pure number state. Re-
constructing the cavity photon-number distribution from
these measurements allows us to determine the mean and
the width of the distribution and thus to distinguish be-
tween states with coherent photon statistics and mixed
thermal-coherent statistics.

The ion is modelled as a three-level system in which
two states, |S〉 ≡ |42S1/2,mJ = +1/2〉 and |D〉 ≡
|32D5/2,mJ = +1/2〉, comprise a qubit (Fig. 1). The
cavity is dispersively coupled to the transition between
|D〉 and the third state, |P 〉 ≡ |42P3/2,mJ = +1/2〉,
with a detuning ∆ = 2π × 125 MHz. The quantiza-
tion axis is defined by a magnetic field of 4.06 G in the
plane perpendicular to the cavity axis. The relevant ion-
cavity parameters are given by (g, κ, γ) = 2π×(0.968,
0.068, 11.5) MHz, where g is the ion-cavity coupling
strength calculated from the cavity properties and the
atomic transition, κ is the cavity field decay rate, and γ
is the atomic decay rate of state |P 〉. Here, we assume
that the ion is positioned at the waist and in an antinode
of a TEM00 mode of the cavity [38, 39]. The expected
frequency shift of the cavity resonance induced by the
dispersively coupled ion is g2/∆ = 2π × 7.50 kHz, which
is much smaller than κ, such that we operate in the weak-



2

FIG. 1. (a) Experimental set-up. A single ion is coupled
to the cavity, which is driven by a weak laser field (cavity
drive). The cavity drive laser (along ŷ) is polarized parallel
to the quantization axis, in the direction x̂ + ẑ. The Ramsey
spectroscopy laser propagates along −(ŷ + ẑ). Cavity out-
put photons are detected by a single-photon-counting module
(SPCM). (b) Energy level diagram of 40Ca+ with the rele-
vant levels |S〉, |D〉, |P 〉, |D′〉 ≡ |32D5/2,mJ = +3/2〉 and

|P ′〉 ≡ |42P3/2,mJ = +3/2〉 of the ion. The 42P1/2 and

32D3/2 manifolds are used for ion cooling and detection. (c)
Levels |D〉, |P 〉, |D′〉, and |P ′〉 experience photon-number-
dependent ac Stark shifts due to the cavity field, indicated in
grey. The frequencies of the bare cavity and the drive laser
are ωC and ωL, respectively, and ∆ is the difference between
ωC and the transition frequency from |D〉 to |P 〉.

pull regime [25, 26]; see Ref. [37] for further discussion
of the choice of ∆. In this regime, the drive laser can be
considered to be resonant with the cavity, irrespective of
the state of the qubit.

In order to probe the cavity field, the ion is first
Doppler-cooled and optically pumped to |S〉. As the first
part of a Ramsey measurement, the qubit is then ini-
tialized in a superposition of |S〉 and |D〉 by a π/2-pulse
of the Ramsey spectroscopy laser at 729 nm. Next, we
drive the cavity with a weak laser field with wavelength
λL = 854 nm for T = 50 µs. Note that the interaction
time T is much larger than the cavity photon lifetime of
τC = 1/(2κ) = 1.2 µs, such that for a mean intracavity
photon number of 〈n〉, 〈n〉T/τC photons on average suc-
cessively interact with the ion. Note also that T is much
shorter than the coherence time of 950 µs on the |S〉–|D〉
transition [40]. The independently calibrated mean pho-
ton number 〈n〉 of the cavity field is set to a value between
0 and 1.6(3), and the drive laser frequency ωL = 2πc/λL
is resonant with the cavity frequency ωC + 〈σD〉g2/∆,
where ωC is the cavity resonance frequency when no ion
is coupled to the cavity, and σD is the operator for the
ion population in |D〉. Finally, a second π/2-pulse with
variable phase φ completes the Ramsey measurement, af-
ter which the qubit state is detected using laser fields at
397 nm and 866 nm [40]. The measurement is repeated

250 times for each phase to obtain the ion population in
|D〉.

The mean population in |D〉 as a function of the phase
φ is plotted in Fig. 2(a) for three values of 〈n〉. As 〈n〉
is increased, two features emerge: the Ramsey fringe
is shifted, and its contrast is reduced. The phase shift
is directly proportional to 〈n〉, as shown in Fig. 2(b),
with proportionality factor Tg2/∆. For 〈n〉 = 0.8(2) and
1.6(3), the phase of the qubit is shifted by 0.57(3)π and
1.12(7)π, respectively. A single photon only interacts
with the ion during its time in the cavity, which has a
mean value τC, corresponding to a phase shift of the ion
by τC g

2/∆ = 0.018π. The accumulated effect of all suc-
cessive photons injected into the cavity accounts for the
total phase shift of the qubit.

The measured phase shift as a function of 〈n〉 can be
used to determine the ion-cavity coupling strength. This
method is independent of the single-atom cooperativity
and thus is valid also for systems in intermediate and
even weak coupling regimes. In such regimes, observing
the vacuum Rabi splitting is not possible, making it dif-
ficult to measure the coupling strength directly. As we
have independently determined all ion-cavity parameters
and calibrated the photo-detection efficiency, we fit a the-
oretical model to the data with the coupling strength as
the only free parameter. In this way, we extract the ex-
perimental value of gexp = 2π × 0.96(4) MHz from the
data displayed in Fig. 2(b), in agreement with the theo-
retical value of g = 2π × 0.968 MHz. We performed the
same set of measurements on another 40Ca+ transition,
using the states |S〉, |D′〉 ≡ |32D5/2,mJ = +3/2〉, and

|P ′〉 ≡ |42P3/2,mJ = +3/2〉 (Fig. 2(c)); the coherence
time for the transition |S〉 − |D′〉 is 510 µs. For the
transition |D′〉 − |P ′〉, we expect g′ = 2π × 0.790 MHz
and extract g′exp = 2π × 0.77(4) MHz. From the two in-
dependent measurements on two transitions, we thus see
that this new method determines the atom-cavity cou-
pling strength in agreement with theory.

In Fig. 2(d), the fringe contrast, defined as the peak-
to-peak value of the fringe divided by twice the fringe
offset, is plotted as a function of 〈n〉 for the transition
|D〉− |P 〉 and in Fig. 2(e) for the transition |D′〉− |P ′〉.
This definition of the contrast takes into account that
the midpoint of the fringe is not necessarily 0.5, due to
spontaneous emission [37]. For |D〉 − |P 〉, the contrast
decreases from 0.99(2) to 0.46(3) as 〈n〉 increases from 0
to 1.6. This reduction reflects the fact that the intracav-
ity photon number is inherently probabilistic, and in this
case, for a coherent drive, follows a Poissonian distribu-
tion. The corresponding photon-number fluctuations in
the cavity field lead to fluctuations of the qubit transi-
tion frequency through the photon-number-dependent ac
Stark shift. Note that the observed reduction of contrast
can, equivalently, be interpreted as a consequence of the
qubit state being measured by the cavity field [14, 25]: In-
tracavity photons interact dispersively with the qubit be-
fore leaking to the environment. The phase of the output
photons thus carries information about the qubit state



3

(a)

C
on

tr
as

t

C
on

tr
as

t

(b)33333333333333333333333333333(c)33333333333333333333333333333333333333333333333333333333333333333333333333(d)333333333333333333333333333333(e)

Io
n3

po
pu

la
tio

n3
in

33

Mean3photon3number3 Mean3photon3number3

Phase3of3second3Ramsey3pulse3(33)

F
rin

g
e3

sh
ift

3(
33)

F
rin

g
e3

sh
ift

3(
33)

0 1 2 3
0.0

0.5

1.0

0.0 0.8 1.6
0.0

0.6

1.2

0.0 0.8 1.6
0.0

0.6

1.2

0.0 0.8 1.6
0.4

0.7

1.0

0.0 0.8 1.6
0.4

0.7

1.0

FIG. 2. (a) Ramsey fringes for mean photon numbers 〈n〉 = 0 (black squares), 0.8(2) (purple circles), and 1.6(3) (blue triangles).
The solid lines are sinusoidal fits [37] and error bars denote quantum projection noise. (b) The phase shift of the Ramsey fringes
as a function of 〈n〉 for the transition |D〉 − |P 〉. Squares are experimental data, while the solid line shows the theoretical
model using the calculated coupling strength g. The dashed line is a linear fit to the data, from which gexp is extracted (see
main text). (c) Ramsey fringe phase shift as a function of 〈n〉 for the transition |D′〉 − |P ′〉 with g′ = 0.82 g. (d) Contrast
of the Ramsey fringes as a function of 〈n〉 for the transition |D〉 − |P 〉. The shaded area shows the contrast expected from
the theoretical model with gexp as input, including its uncertainty. (e) Contrast vs. 〈n〉 for the transition |D′〉 − |P ′〉. For
(b)-(e), the plotted uncertainties in 〈n〉 are statistical and systematic uncertainties from the calibration of the photon number.
Systematic uncertainties in 〈n〉 are 20%. Error bars of fringe shift and contrast are uncertainties of the fits to the Ramsey
fringes.

that could be accessed, e.g., with homodyne or hetero-
dyne detection. All such quantum measurements imply
some amount of backaction [25], which in our case takes
the form of qubit decoherence. Note that in the absence
of a cavity, photons would also induce an ac Stark shift of
the ion’s states, but due to the weakness of the free-space
interaction, the effect would be too small to be measured
at the single-photon level.

Spontaneous emission contributes to decoherence for
both the cavity-drive measurement of Fig. 2 and free-
space measurements. We quantify this effect in a ref-
erence measurement using an “ion-drive” configuration:
The cavity is translated by a few mm along x̂ in order
to decouple it from the ion. The ion is driven with a
laser beam with frequency ωL = ωC. We perform Ram-
sey measurements with the cavity interaction replaced by
the interaction of the ion with this ion-drive laser. The
Ramsey fringe contrast is reduced due to off-resonant
excitation of the population from |D〉 to |P 〉, followed
by spontaneous emission. Fig. 3 compares the Ramsey
fringe contrast as a function of the phase shift for both
the ion-drive and cavity-drive measurements. A given
phase shift corresponds to the same ac Stark shift at the
ion in both measurements. The contrast of the cavity-
drive data is smaller than that of the ion-drive data be-
cause in the former case, both spontaneous emission and

decoherence induced by the cavity photons play a role.
We therefore conclude from this reference measurement
that decoherence is not just caused by spontaneous emis-
sion; rather, a significant contribution to decoherence of
the ion qubit stems from interaction with the cavity field
via the backaction of the cavity photons on the ion.

Next, we reconstruct the cavity photon number distri-
bution with a maximum likelihood algorithm [37]. This
algorithm finds the photon number distribution that is
most likely to have interacted with the ion. It is based
on a model, in which the coherent cavity drive with
mean photon number ncoh is described by an amplitude
η = κ

√
ncoh, and additional number fluctuations are de-

scribed by a thermal bath with mean photon number
nth corresponding to an incoherent contribution to the
driving [41]. The photon number distribution of the in-
tracavity field is then determined by the two parameters
η and nth. The result of the reconstruction is shown
in Fig. 4. For the three Ramsey fringes measured on
the |D〉 − |P 〉 transition, displayed in Fig. 2(a), the re-
construction yields a squared statistical overlap (SSO)(∑

n

√
prec(n)pcal(n)

)2
between the reconstructed dis-

tribution prec(n) and the independently calibrated in-
put state distribution pcal(n) above 99% (Figs. 4(a)-
(c)). The reconstructed state shown in Fig. 4(a) cor-
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FIG. 3. Ramsey fringe contrast as a function of phase shift
for ion-drive (orange circles) and cavity-drive (black squares;
same data as in Fig. 2(b) and (d)) measurements on the |D〉–
|P 〉 transition. The lines are theory curves, using gexp for the
cavity-drive data. The inset shows the ion-drive beam, which
propagates along x̂ − ẑ and is polarized along x̂ + ẑ, along
with the Ramsey spectroscopy beam. The ion is decoupled
from the cavity for the ion-drive measurement.

responds to the vacuum state, and the states in Fig. 4(b)
and (c) are coherent states, with Mandel Q parameters

Q =
(〈
n2
〉
− 〈n〉2

)
/ 〈n〉 − 1 of 0.00+0.02

−0.01, −0.03(7), and

0.04(5), respectively [42]. The uncertainty of the recon-
structed distribution is dominated by quantum projec-
tion noise in the Ramsey measurement [37].

This reconstruction method is also applied to a fourth
state which is generated by applying amplitude noise to
the cavity drive laser via an acousto-optic modulator.
The noise has a bandwidth of 10 MHz � 2κ and can
therefore be considered as white noise. The reconstructed
state, shown in Fig. 4(d), can be described by mixed co-
herent and thermal statistics: From the calibration of
the added noise [37], a value of Q = 0.64(6) is expected,
while the reconstruction yields Q = 0.70+0.07

−0.10. The result
thus shows super-Poissonian intracavity photon statistics
caused by the added thermal noise and is clearly dis-
tinct from the statistics of a coherent state. Note that
our sensing technique is nondestructive because the dis-
persive interaction with the ion does not annihilate the
measured intracavity photons.

An extension of this work would be to reconstruct the
full density matrix of arbitrary states of the cavity field.
For this purpose, we require a displacement operation of

FIG. 4. Photon number distributions reconstructed from the
measured Ramsey fringes for intracavity mean photon num-
bers of (a) 0, (b) 0.8(2), and (c) 1.6(3) (blue bars), and the
expected distributions (pink bars). The reconstructed dis-
tributions yield mean photon numbers of 0.01+0.05

−0.02, 0.84(8),

and 1.49+0.05
−0.06. (d) Reconstructed distribution when the cav-

ity is driven with light of mixed coherent-thermal statistics
with mean photon number 〈n〉 = 1.05+0.07

−0.11, yielding a re-

constructed mean photon number of 〈n〉 = 1.12+0.14
−0.15. The

squared statistical overlap between the reconstructed distri-
butions and the expected distributions is higher than 0.99 for
(a)-(d).

the cavity field, as has been demonstrated in microwave
cavities [18]. With the target field to be measured popu-
lating the cavity, a second field as a local oscillator would
be sent to the cavity. The total field interacting with the
ion would be the sum of the known (local oscillator) and
unknown (target) fields, and by varying the known field
and measuring the state of the ion, one would be able to
extract the full target field density matrix.

We have focused here on measuring the ion’s state
to extract information about the cavity field. However,
the scenario can be reversed: quantum nondemolition
measurements of the ion’s state become possible in our
setup via heterodyne measurement of the cavity output
field, allowing single quantum trajectories of the ion’s
electronic state to be monitored and the qubit state
to be stabilized, as demonstrated with superconduct-
ing qubits [26, 27]. Furthermore, the strong-pull regime
(g2/∆ > κ) would be accessible with a higher finesse
cavity [25, 26, 37]. In this regime, the qubit spectrum
splits into several lines, each corresponding to a different
photon-number component [15, 43], providing a route to
engineer nonclassical cavity-field states in the optical do-
main. Other possible extensions include increasing the
sensitivity of the measurement by using several ions via
their collective coupling to the cavity [44] or via their
entanglement [45].
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In summary, we have implemented an ion-based ana-
lyzer for the statistics of optical photons that does not
destroy the photons. Information about the intracav-
ity photon number is imprinted onto the state of an ion
qubit via a dispersive interaction. Ramsey spectroscopy
and the maximum likelihood method are used to recon-
struct the intracavity photon statistics, yielding results
in excellent agreement with the expected distributions.
Our work represents the first such nondestructive prob-
ing of cavity photon distributions in the optical domain,
providing tools for the generation of nonclassical optical
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