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Nonequilibrium sampling is potentially much more versatile than its equilibrium counterpart, but
it comes with challenges because the invariant distribution is not typically known when the dynamics
breaks detailed balance. Here, we derive a generic importance sampling technique that leverages
the statistical power of configurations transported by nonequilibrium trajectories, and can be used
to compute averages with respect to arbitrary target distributions. As a dissipative reweighting
scheme, the method can be viewed in relation to the annealed importance sampling (AIS) method
and the related Jarzynski equality. Unlike AIS, our approach gives an unbiased estimator, with
provably lower variance than directly estimating the average of an observable. We also establish a
direct relation between a dynamical quantity, the dissipation, and the volume of phase space, from
which we can compute quantities such as the density of states and Bayes factors. We illustrate
the properties of estimators relying on this sampling technique in the context of density of state
calculations, showing that it scales favorable with dimensionality—in particular, we show that it can
be used to compute the phase diagram of the mean-field Ising model from a single nonequilibrium
trajectory. We also demonstrate the robustness and efficiency of the approach with an application to
a Bayesian model comparison problem of the type encountered in astrophysics and machine learning.
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Statistical estimation using averages over a dy-
namical process typically relies on the principle of
detailed balance. Consider a dynamical system

Ẋ(t,x) = b(X(t,x)) X(0,x) = x (1)

where x ∈ Ω ⊂ Rn is a state that is propagated in
time to X(t,x) via the vector field b : Ω → Rn. If
the dynamics is microscopically reversible with re-
spect to some target density ρ(x), then this density
is preserved under time evolution. Practically, this
means that the expectation of an observable φ(x)
with respect to ρ(x), which we denote by 〈φ〉, can
be computed as a time average along an equilibrium
trajectory generated from (1), provided that the dy-
namics is ergodic. This direct sampling scheme be-
comes inefficient if the expectation 〈φ〉 is dominated
by values of x that are rare under ρ(x) and therefore
infrequently visited by the dynamics (1).

Importance sampling estimates relying on
nonequilibrium dynamics have shown success in
a variety of applications, from statistical physics
to machine learning [1–7]. Here, we derive a class
of estimators based on an exact reweighting of
the samples gathered during a nonequilibrium
process with a stationary density. Similar to the
annealed importance sampling (AIS) method [6]
and estimators based on the Jarzynski equality [1],
our scheme accelerates the transport of density
to rare regions of phase space which may make
substantial contributions to equilibrium averages.
This basic idea is exploited by many different
enhanced sampling techniques [8–11]. Physically,

the statistical weight of the transported density can
be interpreted through the fluctuation theorem as a
dissipative reweighting whose value can be derived
explicitly. As we show, the resulting estimator is
unbiased, unlike the AIS estimator, which requires
computing a ratio of sample means (cf. Eq. 12 of
Ref. [6]). Our estimator always has lower variance
than the direct estimator, a reduction that comes at
the nontrivial cost of generating trajectories. That
said, nonequilibrium transport enables us to access
states that are exponentially rare in original density
but which may dominate expectation values; direct
sampling fails dramatically in such settings.

Nonequilibrium estimators.—A generic impor-
tance sampling scheme to compute the average with
respect to some target density ρ(x) reweights sam-
ples drawn from another density ρne(x)

〈φ〉 = 〈φρ/ρne〉ne. (2)

Our samplers use for ρne(x) the non-equilibrium
stationary density of a dynamical system based on
generating trajectories by an initiate-then-propagate
procedure: We draw points x from the density ρ(x)
that we then propagate forward and backward in
time using the dynamics (1) until the trajectories
X(t,x) hit some fixed target set. Concrete appli-
cations determine the appropriate choice of target
sets: they could for example be the boundary of
Ω or the fixed points of (1) in Ω [12]. Using the
set of trajectories generated this way we define the
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nonequilibrium average 〈·〉ne as

〈φ〉ne =
1

〈τ〉

∫
Ω

∫ τ+(x)

τ−(x)

φ(X(t,x))dt ρ(x)dx (3)

where τ+(x) ≥ 0 and τ−(x) ≤ 0 are the first times
at which X(t,x) ∈ ∂Ω in the future or in the past,
respectively, and 〈τ〉 = 〈τ+〉 − 〈τ−〉 [13]. By chang-
ing integration variables using X(t,x) → x and
t→ −t we can express (3) as

〈φ〉ne =
1

〈τ〉

∫
Ω

φ(x)

∫ τ+(x)

τ−(x)

J(t,x)ρ(X(t,x))dt dx

(4)
where J(t,x) is the Jacobian of the transformation:

J(t,x) = exp
(∫ t

0
∇ · b(X(s,x))ds

)
. (5)

Physically, the Jacobian corresponds to the total en-
ergy dissipation upto time t along the trajectory.
This derivation is described in detail in the supple-
mentary material (SM). Now, (4) can be interpreted
as an expectation with respect to a nonequilibrium
density, 〈φ〉ne =

∫
Ω
φ(x)ρne(x)dx, with ρne(x) given

by

ρne(x) =
1

〈τ〉

∫ τ+(x)

τ−(x)

J(t,x)ρ(X(t,x))dt. (6)

We can now use this expression for ρne(x) in (2) for
reweighting. As shown in the SM this gives

〈φ〉 =

〈∫ τ+

τ− φ(X(t))J(t)ρ(X(t))dt∫ τ+

τ− J(t)ρ(X(t))dt

〉
(7)

which yields the estimator, one of our main results,

〈φ〉 = lim
N→∞

〈φ〉N where 〈φ〉N =
1

N

N∑
i=1

∫ τ+(xi)

τ−(xi)
φ(X(t,xi))J(t,xi)ρ(X(t,xi))dt∫ τ+(xi)

τ−(xi)
J(t,xi)ρ(X(t,xi))dt

, (8)

provided that the points xi are drawn (not nec-
essarily independently) from ρ(x). This equation
reweights points sampled along a nonequilibrium
trajectory according to their dissipation, a physically
analogous strategy to that in AIS.

Unlike other dissipative reweighting strategies, the
estimator 〈φ〉N is unbiased, valid for any dynam-
ics (1) and any target density ρ(x). Like standard
Metropolis Monte-Carlo, it only requires knowing
the density up to a normalization factor. It has lower
variance than the direct estimator N−1

∑N
i=1 φ(xi)

[14] since the variance of this direct estimator is
N−1(〈φ2〉 − 〈φ〉2) whereas the variance of 〈φ〉N is
N−1(A−〈φ〉2) with A ≤ 〈φ2〉 since Jensen’s inequal-
ity implies〈∣∣∣∣∣

∫ τ+

τ− φ(X(t))J(t)ρ(X(t))dt∫ τ+

τ− J(t)ρ(X(t))dt

∣∣∣∣∣
2〉

= A

≤
〈∫ τ+

τ− |φ(X(t))|2J(t)ρ(X(t))dt∫ τ+

τ− J(t)ρ(X(t))dt

〉
=
〈
φ2
〉
.

(9)

With a proper choice of b(x) the estimator 〈φ〉N in
(8) has the potential to significantly outperform the
direct estimator. It does so by transporting points
drawn naively from ρ(x) towards regions that sta-
tistically dominate the expectation of φ(x). In prac-
tice, it is also simple to use: (i) sample points xi from

ρ(x) using e.g. standard Monte Carlo; (ii) compute
the trajectoryX(t,xi) passing through each of these
points by integrating (1) forward and backward in
time until X(τ±(xi),xi) ∈ ∂Ω (which also gives
τ±(xi)); (iii) use these data to calculate J(t,xi)
from (5) first, then the integrals in (8); (iv) average
the results to get 〈φ〉N . Note that the operations in
(ii) and (iii) can be performed in parallel, and we
can monitor the value of the running average 〈φ〉N
as N increases to check convergence.

Density of states (DOS).— Consider a d-
dimensional system with position q ∈ Rd, momenta
p ∈ Rd, and Hamiltonian H(q,p) = 1

2 |p|2 + U(q)
where U(q) is some potential bounded from below.
Let V (E) be the volume of phase space below some
threshold energy E,

V (E) =

∫
H(q,p)<E

dqdp, (10)

From V (E) one can compute the DOS, D(E) =
V ′(E), or the canonical partition function, Z(β) =∫
R e
−βED(E)dE = β

∫
R e
−βEV (E)dE.

To calculate (10) with our estimator (8), we set
x = (q,p), define Ω = {(q,p) : H(q,p) < Emax}
for some Emax < ∞, and use dissipative Langevin
dynamics with b(x) = (p,−∇U(q)− γp) in (1)

q̇ = p, ṗ = −∇U(q)− γp, (11)
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for some friction coefficient γ > 0. With this choice,
the dissipative term in the estimator (8) takes the
simple form:

J(t,x) = e−dγt. (12)

If we also choose the target density ρ(x) to be uni-
form in Ω, the estimator further simplifies due to
cancelation of the two ρ terms in (8). We arrive at

V (E)

V (Emax)
= lim
N→∞

1

N

N∑
i=1

e−dγ(τ
E(xi)−τ−(xi)) (13)

where τE(x) denotes the positive (and possibly infi-
nite) or negative time for a trajectory initiated from
x = (q,p) to reach energy E ≤ Emax under the
dynamics (11). Eq. (13) is our second main result:
it establishes a dictionary between a nonequilibrium
dynamical quantity and a purely static, global prop-
erty of the energy landscape, V (E). This result as-
serts that the rate of decrease of the volume of phase
space can be measured by computing an average of
the total dissipation of nonequilibrium descent tra-
jectories. We do not know of an analogous result in
the literature.

The τ+(x) terms vanish in this dynamics because
the time to reach a local minimum diverges [15]. In
practice we halt the forward trajectories when the
norm of the gradient is below some tolerance. To
compute an unnormalized volume, we can estimate
V (Emax) with standard Monte Carlo integration.

The power of the procedure we have described
comes from the fact that the forward trajectories
are guaranteed to visit regions of low energy around
local minima of U(q) that would otherwise be dif-
ficult to sample by drawing points uniformly in
{H(q,p) < Emax}. In this regard our approach is
also similar to nested sampling [16–20]. Like nested
sampling, we do not require an a priori stratifica-
tion of the energy shells, which is the way the DOS
is typically calculated via thermodynamic integra-
tion [21, 22] or simulated tempering [23, 24]. Our
method also offers several advantages over nested
sampling. First, the depth of energies reached in
nested sampling is determined by the initial number
of points used in a computation. If too few points are
used, the calculation must be repeated in full with
a larger number of initial points. Here, the accu-
racy of the calculation improves and explores deeper
minima simply by running additional ascent/descent
trajectories. In addition, our approach does not re-
quire uniform sampling below every energy level,
which is required in nested sampling and is a dif-
ficult condition to implement [19]. We must only
generate points uniformly below the highest energy

level, Emax, which is usually much easier. Computa-
tionally, we also benefit from the fact that every tra-
jectory contributes independently to our estimator,
meaning that the implementation is trivially paral-
lelizable.

Variance estimation in the small γ limit.— We
know from (9) that the variance of our estimator
is lower than that of the direct estimator. In the
specific context of a DOS calculation using (11),
we can analyze the variance more explicitly in the
limit of small γ, in which the descent dynamics
in (11) reduces to a closed equation for the energy
E = H(q,p) on the rescaled time t′ = γt. This
dynamics evolves on the disconnectivity (or Reeb)
graph [25], which branches at every energy level at
which a basin where H(q,p) ≤ E splits into more
than one connected component. In the simplest case
when the potential U(q) has a single well, the graph
has only one branch and the value of γ(τE(xi) −
τ−(xi)) becomes the same along every trajectory
when γ → 0. Therefore the estimator (13) has zero
variance—a single trajectory gives the exact value
for V (E)/V (Emax). If the disconnectivity graph has
several branches, we can count all the paths along
the graph starting at E = Emax which end at a given
branch. Assuming that the number of such paths
is M ≥ 1, we can associate a deterministic time
∆τEj > 0, possibly infinite, along each path. We

define ∆τEj with j = 1, . . . ,M as the total rescaled
time the trajectory takes to go from H(q,p) = Emax

toH(q,p) = E by the effective dynamics for E along
the path with index j and ∆τEj =∞ if the path ter-
minates at an energy E′ > E. For any initial con-
dition, limγ→0 γ(τE(xi) − τ−(xi)) = ∆τEj for some
index j, meaning the only random component in the
procedure is which path is picked if the trajectory
starts at xi. We denote by pj the probability, com-
puted over all initial conditions drawn uniformly in
{H(q,p) < Emax}, that the path with index j is
taken. Then in the small γ limit the mean and vari-
ance of the estimator (13) are

mean =
V (E)

V (Emax)
=

M∑
j=1

pje
−d∆τE

j ,

variance =

M∑
j=1

pje
−2d∆τE

j −mean2.

(14)

The specific values of pj , ∆τEj , and M which de-
termine the quality of the estimator (13) depend on
both the structure of the disconnectivity graph and
the effective equation for the energy on this graph.
What is remarkable, however, is that pj , ∆τEj , and
M depend on the dimensionality of the system only
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FIG. 1. Mean-field Ising model with potential (15): vol-
ume ratio obtained from (13) using a single ascent / de-
scent trajectory. The inset shows the free energy in β
and m = d−1 ∑d

i=1 cos(qi) that can also be estimated
from this single trajectory (right half) and analytically
using large deviation theory (left half).

indirectly. In high dimensional settings, the com-
plexity of the disconnectivity is a generic challenge,
but our approach has favorable properties even in
these difficult cases. In particular, the computa-
tional cost of the procedure increases only linearly
in γ as we decrease this parameter to small values.
We also stress that the formulae (14) for the mean
and variance rely on the assumption γ � 1, but the
estimator remains valid for any value of γ.

Phase diagram of the mean-field Ising model.—
As an illustration of the statistical power contained
in the nonequilibrium trajectories, we computed the
phase diagram of the mean-field Ising model with
potential

U(q) = − 1

2d

d∑
i,j=1

cos(qi) cos(qj). (15)

This system is known to display a phase transition in
temperature at the critical βc = 2 [26]. The poten-
tial (15) is double-well, but because of the symmetry
q → −q a single ascent / descent trajectory can be
used to estimate the volume ratio V (E)/V (Emax).
We note that while there are only to energy min-
ima, the energy landscape has an exponential num-
ber of critical points (the derivative with respect to
θj vanishes 2d when sin(θj) = 0), so the geometry of
the landscape is nontrivial. We performed this cal-
culation when d = 100 with γ = 10−3 to obtain the
result shown in Fig. 1: as can be seen, this result
spans 300 order of magnitudes and compares very
well with the analytical estimate that can be ob-

tained in the large d limit, as described in the SM.
The single ascent /descent trajectory can also be
used to calculate the free energy in β and magneti-
zation m = d−1

∑d
i=1 cos(qi) of the system (cf. SM).

The result shown in the inset of Fig. 1 demonstrates
that our estimate compares well with the large d es-
timate. The code to reproduce these experiments
is available on Gitlab [27]. The numerical experi-
ments require only several minutes of computation
on a single core, but parallelization strategies could
dramatically reduce the duration.

Bayes factor.—The computations for the den-
sity of states have an equivalent manifestation in
Bayesian estimation. Given a model M, one seeks
to maximize the probability of a set of parameters
θ ∈ Rd conditioned on observations of data D. Using
Bayes Theorem, we can write

P(θ|D,M) = L(θ)π(θ)/Z (16)

where L(θ) = P(D|θ,M) is the likelihood function,
π(θ) = P(θ|M) is the prior, and Z = P(D|M) =∫
L(θ)π(θ)dθ is the partition function, often called

the Bayesian evidence in this context; it is the canon-
ical partition function with β = 1.

In Bayesian inference, we choose a model and
then estimate its parameters without knowledge of
the partition function by doing gradient descent on
− logL(θ) ≡ U(θ), which depends on the model we
have taken. However, there is no a priori guarantee
that the chosen model is optimal, so it is often nec-
essary to make comparisons of two distinct models
M and M′. Ideally, one would compare the proba-
bility of the observed data given each model, that is
the Bayes factors

Z/Z ′ = P(D|M)/P(D|M′). (17)

Similarly, computing posterior probabilities also re-
quires knowledge of the partition function.

As we have already emphasized, computing Z is
intractable analytically in all but the simplest cases.
Skilling [16] demonstrated that it is possible to nu-
merically evaluate the “prior volume”,

V (L) =

∫
L(θ)≥L

π(θ)dθ (18)

to produce an estimate of Z via

Z =

∫ L0

0

V (L) dL, (19)

where L0 is the maximum value of the likelihood.
Just as in the density of states calculation, we can
evaluate the Bayesian evidence by using trajectorial
estimators.



5

10−2 10−1 100 101 102

E

10−22

10−18

10−14

10−10

10−6

10−2

V
(E

)/
V

(E
m

ax
)

d = 10, N = 100, γ = 1

Eq. (13)

E

ex
p

(−
d
γ

∆
τ
)

FIG. 2. Mixture of Gaussians inference problem with
d = 10 and 50 wells in the mixture. The volume of states
below E = − logL is shown as red circles. In the small
gamma limit, the time to reach energy E, ∆τ = τE−τ−,
should be independent of the initial condition. The inset
shows that the dissipative dynamics converges to many
different local minima, corresponding to the individually
discernible lines in the inset. A total of N = 100 trajec-
tories are plotted, but there are fewer than one hundred
visible lines, meaning that some trajectories not only
end in the same basin, but also have decay in energy at
the same rate, as the small γ limit predicts. This demon-
strates that the low variance regime can be achieved even
with modest values of γ.

To do so, we sample parameters of the model M
uniformly and define a flow of parameters via dissi-
pative Langevin dynamics with U(θ) = − logL(θ)
(which also gives L0 from the terminal point of the
descent trajectories). We construct an estimate of Z
by computing V (L) using Eq. (13) and numerically
integrating Eq. (19) using quadrature. Note that the
contribution from the momenta can be factored out
and the resulting Gaussian integral can be computed
exactly.

We tested our approach using a mixture of Gaus-
sians model, a benchmark which has been used
to characterize nested sampling for inference prob-
lems [28]. The model is defined as a mixture of n
distributions in dimension d with amplitudes Ai,

L(θ) =

n∑
i=1

Aie
− 1

2 (θ−µi)
TΣ−1

i (θ−µi). (20)

Though we do not have access to the exact expres-
sion for V (E) at all energy levels in this model, we
can evaluate the partition function Z exactly.

We used n = 50 wells with depths exponentially
distributed in dimension d = 10, an example much

more complex than previous benchmarks. While
this landscape is not rugged, in mixture of Gaus-
sian problems entropic effects can lead to extremely
difficult optimization problems because we are re-
quired to sample exponentially small volumes. In
this regime, brute force Monte Carlo approaches fail
dramatically. Fig. 2 illustrates the statistical power
of the trajectory reweighting approach. With only
100 trajectories, we recover the volume of states for
the likelihood function extremely accurately, espe-
cially at low energies, where the standard error is
vanishingly small. An accurate estimate at low en-
ergies leads to robust estimates of Z because the
contribution to Z decays exponentially with E. In
particular, we know the low energy volume estimates
are accurate because we compute Z = 17.41 versus
the exact result Z = 17.10. For this calculation
we set Emax = 450, meaning that the states we ne-
glected have likelihood lower than e−450.

Conclusions.—Any estimate of the microcanon-
ical partition function requires a thorough explo-
ration of the states of the system. Both naive Monte
Carlo sampling and equilibrium dynamics often fail
to visit states, which, though rare, dramatically im-
pact the thermodynamic properties of the system. A
nonequilibrium dynamics suffers from precisely the
opposite problem: it explores the states rapidly, but
not in proportion to their equilibrium probabilities.
Our estimator, via Eq. (13) establishes a simple link
between a nonequilibrium dynamical observable and
a static property, the volume of phase space.

With a properly formulated algorithm, we can
fully account for the statistical bias of a nonequi-
librium dynamics. The resulting estimators can ac-
cess states that are extremely atypical in equilib-
rium sampling schemes, but nevertheless physically
consequential. While we demonstrated the poten-
tial of these estimators by computing the density of
states and the computationally analogous Bayes fac-
tor, the expression in (8) is extremely general. At-
tractive applications within reach include adapting
this approach to basin volume calculations [29, 30],
computing the partition function of restricted Boltz-
mann machines [6, 31], and importance sampling
to compute properties of systems in nonequilibrium
stationary states, like active matter [32, 33].
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