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We study the quasiparticle excitation and quench dynamics of the one-dimensional (1D) transverse-field Ising
model with power-law (1/rα) interactions. We find that long-range interactions give rise to a confining poten-
tial, which couples pairs of domain walls (kinks) into bound quasiparticles, analogous to mesonic states in
high-energy physics. We show that these quasiparticles have signatures in the dynamics of order parameters
following a global quench and the Fourier spectrum of these order parameters can be expolited as a direct probe
of the masses of the confined quasiparticles. We introduce a two-kink model to qualitatively explain the phe-
nomenon of long-range-interaction-induced confinement, and to quantitatively predict the masses of the bound
quasiparticles. Furthermore, we illustrate that these quasiparticle states can lead to slow thermalization of one-
point observables for certain initial states. Our work is readily applicable to current trapped-ion experiments.

Long-range interacting quantum systems occur naturally in
numerous quantum simulators [1–10]. A paradigmatic model
considers interactions decaying with distance r as a power law
1/rα. This describes the interaction term in trapped-ion spin
systems [3, 11–15], polar molecules [16–19], magnetic atoms
[5, 20, 21], and Rydberg atoms [1, 2, 22, 23]. One remarkable
consequence of long-range interactions is the breakdown of
locality, where quantum information, bounded by linear ‘light
cones’ in short-range interacting systems [24], can propagate
super-ballistically or even instantaneously [25–31]. The non-
local propagation of quantum correlations in 1D systems has
been observed in trapped-ion experiments [12, 13]. Moreover,
1D long-range interacting quantum systems can host novel
physics that is absent in their short-range counterparts, such
as continuous symmetry breaking [32, 33].

Recently, it has been shown that confinement–which has
origins in high-energy physics–has dramatic signatures in the
quantum quench dynamics of short-range interacting spin
chains [34]. Owing to confinement, quarks cannot be directly
observed in nature as they form mesons and baryons due to
strong interactions [35, 36]. An archetypal model with anal-
ogous confinement effects in quantum many-body systems is
the 1D short-range interacting Ising model with both trans-
verse and longitudinal fields [37–42]. For a vanishing longi-
tudinal field, domain-wall quasiparticles propagate freely and
map out light-cone spreading of quantum information [41–
44]. As first proposed by McCoy and Wu [45–47], a non-
zero longitudinal field induces an attractive linear potential
between two domain walls and confines them into mesonic
quasiparticles. Recently, Kormos et al. investigated global
quenches in this system and showed that the non-equilibrium
dynamics can be used to probe the confined quasiparticle ex-
citations [34].

In this work, we study the non-equilibrium dynamics of the
long-range interacting transverse-field Ising model without a
longitudinal field after a global quantum quench. We find that
long-range interactions introduce an effective attractive force
between a pair of domain walls, thus confining them into a
bound state, analogous to the meson in high-energy physics.

We calculate time-dependent order parameters and connected
correlation functions, both of which feature clear signatures
of confined quasiparticle excitations [41, 42]. The masses
of these bound quasiparticles–the energy gaps relative to the
ground state–can be directly extracted from the Fourier spec-
trum of time-dependent order parameters [34, 41, 42]. We
introduce a two-kink model to explicitly show that the con-
fining potential comes from long-range interactions. This ef-
fective model also gives good predictions for the quasiparti-
cles’ masses and their dispersion relations. Furthermore, we
study the effect of confined quasiparticles on the thermaliza-
tion of different initial states. We find that for certain ini-
tial states, one-point observables exhibit slow thermalization
[41, 42, 48, 49], which might help protect ordered phases in
the prethermal region [50–52].

We note that our study is in agreement with the gen-
eral mechanism of global quantum quenches, first formu-
lated in Refs. [41, 42, 44] for short-range interacting sys-
tems, and demonstrates that the general theory developed in
Refs. [41, 42, 44] holds for systems with long-range interac-
tions. Our work is well within the reach of current trapped-
ion experiments [15] and other atomic, molecular, and optical
(AMO) experimental platforms [1, 9, 53].

The model.— Let us consider a quantum spin chain with
long-range interactions, described by the following Hamilto-
nian,

H = −
L∑
i<j

J

rαij
σzi σ

z
j −B

L∑
i=1

σxi , (1)

where σµi are the Pauli matrices on site i, L is the system
size, rij is the distance between sites i and j (nearest-neighbor
spacing is set to 1), J sets the overall energy scale (set to
1), B is a global transverse field, and α describes the power-
law decay of long-range interactions. In this work, we con-
sider periodic boundary conditions unless otherwise specified
(rij = min (|i− j|, L− |i− j|)).

In the nearest-neighbor interacting limit (α → ∞), H
is exactly solvable via a Jordan-Wigner mapping to spinless
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FIG. 1. (a)-(c) 〈σzjσzk〉c, and (d) SA(t) versus t after a quantum
quench with initial state |Ψ0〉. L = 19, k = 10, and B = 0.27. (a)
Short-range interacting case (α → ∞), (b) α = 2.6, (c) α = 2.3.
The dashed white lines illustrate the maximal velocity, 4B, of freely
propagating domain walls in the short-range interacting case [34].
(d) SA(t) for various α.

fermions. It exhibits a phase transition at B = 1, which
separates the ferromagnetic and paramagnetic regions [54].
The phase transition persists for long-range interactions, while
the critical value of B increases [55–58]. In trapped-ion ex-
periments, the range of the exponent can be tuned within
0 < α < 3 by changing the detuning of the applied opti-
cal fields from phonon sidebands. We restrict the numerics to
α > 1 in order to ensure a well-behaved thermodynamic limit
(the case of α ∈ [0, 1] will be discussed later). Several exper-
iments have investigated the real-time dynamics of the above
model (or closely related models), including dynamical phase
transitions [15, 59], the non-local propagation of correlations
[12, 13], time crystals [50], and many-body localization [14].

Quench dynamics.— We first study the quench dynamics of
the above model. We focus on an initial state with all spins po-
larized in the z direction, |Ψ0〉 = |... ↑↑↑ ...〉, which is easily
preparable in trapped-ion experiments [15]. The system is al-
lowed to evolve under the Hamiltonian (1). This is equivalent
to a global quantum quench from zero to finite B [15, 41, 42].
In order to explore the physics of domain walls, we focus on
quantum quenches within the ferromagnetic phase [43, 60].
We mention that similar features persist when the initial state
is chosen as the ground state of Eq. (1) with finite B in the
ferromagnetic region.

We use the Krylov-space method to simulate the quench
dynamics of our system [61, 62]. Figs. 1(a)-(c) show the
equal-time connected correlation functions, 〈σzj (t)σzk(t)〉c =
〈σzj (t)σzk(t)〉−〈σzj (t)〉〈σzk(t)〉, after the sudden quench (k in-
dicates the central lattice site). In the short-range interacting
limit [Fig. 1(a)], we recover the exactly solvable case, where
correlations spread with a velocity (4B) equal to twice the
maximal speed of free domain-walls [34, 43, 44]. Increasing
the Ising interaction range (decreasing α) strongly suppresses
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FIG. 2. (a)-(b) 〈σz(t)〉 (black line) versus time after quenching to
(a) α = 2.3, B = 0.27, (b) α = 1.4, B = 0.35 for L = 20. The
dashed green lines show 〈σz(t)〉 for the short-range model (same
B). (c)-(d) Fourier spectrum of 〈σz(t)〉 for the long-range case in
(a) and (b), respectively. The largest time for the Fourier transform is
t = 30 and 12 for (c) and (d), respectively. The parameters in (b,d)
are accessible in current trapped-ion experiments [15]. The dashed
lines show the mesonic masses (mi) and their differences (mij ≡
mj −mi) calculated using the two-kink model.

the magnitude of 〈σzj (t)σzk(t)〉c, as shown in Figs. 1(b) and
1(c). One can also see the oscillatory behaviour of correlations
[Figs. 1(b) and 1(c)], similar to that of Ref. [34]. However, we
emphasize that the light-cone spreading of correlations is al-
ways present [34, 44], though it may have a different velocity
depending on the quasiparticles in the system [44]. The ac-
tual extent of the light cone becomes clearer by zooming in
on the ‘black’ regions of Figs. 1(b) and 1(c) (see Supplemen-
tal Material [63]). This result is in agreement with the general
mechanism of global quantum quenches first derived in Ref.
[44].

The propagating quasiparticles produced by the quench
map out the light-cone spreading of correlations [44, 63]
and lead to the growth of entanglement entropy [34].
Fig. 1(d) shows the growth of entanglement entropy, SA(t) =
−Tr[ρA(t)ln(ρA(t))], where ρA(t) is the reduced density ma-
trix of one half of the chain, for various α. As one can see, the
entanglement entropy growth for smaller α is much slower
than the short-range case (linear growth) [28]. This is be-
cause the propagating quasiparticles have smaller velocities
for longer-range interactions [63].

We plot time-dependent order parameters 〈σz(t)〉 =
1
L

∑
i〈σzi (t)〉 in Figs. 2(a) and (b) [64]. Different from the

rapid exponential decay of the magnetization for the short-
range case, 〈σz(t)〉 exhibits periodic oscillations with almost
no decay [41, 42, 65–67] in the time window shown here. We
emphasize that the qualitative change in dynamics is caused
by the long-range interactions, not by an additional longitu-
dinal field as in the short-range interacting case [34]. The
Fourier spectrum of 〈σz(t)〉 illustrates that the oscillations are
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FIG. 3. (a) Potential energy as a function of distance x between
the two domain walls (n = |x|). Red line: α = 1.9; green line:
α = 2.3. Inset: typical spin configuration of two-domain-wall states.
(b)-(d) Comparison of two-kink model (blue) and ED results (red).
(b) Energy spectrum. Parameters: α = 2.3, B = 0.27, L = 20.
(c) m1 versus α with parameters B = 0.27 and L = 22. Inset:
Difference of m1 between the two methods, ∆m1, versus L. (d) m1

versus L (same parameters as (b)). The dashed lines are m1,∞. The
inset shows m1,∞ − m1 versus system size. The black line shows
the fitting of the two-kink model’s data to (1/L)β , with β = 1.315.
ED data has similar scaling with β = 1.34. m1,∞ is chosen as 5.56
(5.62) for the two-kink model (ED).

associated with multiple frequencies [Figs. 2(c) and 2(d)]. As
we will see, these frequencies coincide with the masses (and
their differences) of quasiparticles [41, 42].

Two-kink model and bound states.— To understand the
quasiparticles in our system, we use a two-kink model to
perturbatively study the low-energy excitations of Eq. (1).
The two-kink model has been used to phenomenologically
study excitations in short-range interacting quasi-1D com-
pounds [37, 68]. The idea is to restrict the Hilbert-space to
two domain-wall states [see inset of Fig. 3(a)], where regions
of different magnetization are separated by the two domain
walls. The projected model is expected to work well when B
is much smaller than J [34].

The Hilbert space of the projected model is spanned by
states of n down-spins (clustered together), represented as:
|j, n〉 = |... ↑↑↓j↓ ... ↓↓(j+n−1)↑↑ ...〉, where j is the start-
ing position of the cluster. The projected Hamiltonian, H =
PHP (P denotes the projection operator to the two-domain-
wall subspace), acts on |j, n〉 as follows,

H |j, n〉 =V (n) |j, n〉 −B[|j, n+ 1〉+ |j, n− 1〉
+ |j + 1, n+ 1〉+ |j − 1, n+ 1〉].

(2)

Here, we have defined the potential energy as V (n) =
〈j, n|H|j, n〉−〈Ψ0|H|Ψ0〉. Utilizing translational invariance,
we transform the two-domain-wall state into momentum ba-
sis, |k, n〉 = 1√

L

∑L
j=1exp(−ikj− ikn/2) |j, n〉, which gives

H =
∑
k,n

V (n)|k, n〉〈k, n| − 2B cos
k

2
|k, n〉〈k, n+ 1|

− 2B cos
k

2
|k, n〉〈k, n− 1|.

(3)

For L → ∞, the potential energy of a two-domain-wall spin
configuration is

V (n) = 4nζ(α)J − 4J
∑

1≤l<n

∑
1≤r≤l

1

rα
, (4)

where ζ(α) =
∑∞
z=1

1
zα denotes the Riemann zeta function.

As plotted in Fig. 3(a), V (n) increases with the distance be-
tween domain walls. For the short-range model studied in
Ref. [34], the confining potential is due to an additional on-
site longitudinal magnetic field. In our case, the confining
potential is intrinsically generated by the long-range interac-
tions.

The picture now becomes clear: the long-range Ising inter-
action gives rise to an effective potential, which increases with
separation between the two domain walls, while the transverse
magnetic field acts as kinetic energy for domain walls (chang-
ing the size of the cluster). Therefore, a pair of domain walls,
each of which is free quasiparticle in the short-range limit,
become bounded together when α decreases. Note that V (n)
has an upper bound when α > 2, as illustrated in Fig. 3(a)
(see Supplemental Material [63]). This indicates that the
lower part of the energy spectrum is composed of domain-wall
bound states, while above some energy threshold, we have
a continuum of states [Fig. 3(b)]. For α ≤ 2, however, all
excitations within the two-kink model are bound quasiparti-
cles, as the confining potential V (n) become unbounded when
n → ∞ [63]. This is in contrast with finite-range interacting
models, where the potential becomes flat for n greater than the
interaction range. In other words, for finite-range interacting
systems two domain walls will behave like freely propagat-
ing particles if the domain size of the initial state exceeds the
interaction range.

Fig. 3(b) shows the energy spectrum calculated by the two-
kink model (blue dots) and exact diagonalization (ED) of the
full Hamiltonian (red dots). The energy spectrum agrees well
for the two methods, demonstrating that low-energy excita-
tions are dominated by two-domain-wall states. The bound
states’ masses [69] and dispersion relations can be simply read
out from the energy spectrum. Moreover, the Fourier frequen-
cies of 〈σz(t)〉 [Figs. 2(c) and 2(d)] coincide, to high accuracy,
with the masses of the bound states (and their differences) cal-
culated using the two-kink model [41, 42]. This demonstrates
that the quench dynamics of the long-range interacting model
is indeed dominated by confined quasiparticles.

We compare the smallest quasiparticle mass, m1, as a
function of α calculated using the two-kink model and ED
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[Fig. 3(c)]. For a large range of α, we see excellent agree-
ment between the two methods, and the numerical differ-
ence does not increase for larger L [inset of Fig. 3(c)]. The
masses increase with L as longer chains have more interaction
terms [63]. However, V (n) is finite (for finite n) in the ther-
modynamic limit, since the Riemann zeta function converges
for α > 1 [70]. This leads to finite masses, even for an infinite
system for α > 1 (see Supplemental Material [63]). As shown
in Fig. 3(d) , the mass calculated from the two-kink model in-
deed exhibits convergence in the thermodynamic limit. For
the two-kink model, the difference between m1 and its ther-
modynamic value, m1,∞, scales as (1/L)β , with β ≈ α − 1
[63], as shown in the inset. While we cannot verify conver-
gence using ED, we do observe similar scaling of m1 [inset
of Fig. 3(d)]. For 0 ≤ α ≤ 1, V (n) becomes infinite, even
for finite n, and thus the quasiparticles have infinite energy
(as the Riemann zeta function diverges for 0 ≤ α ≤ 1 [70]),
consistent with the results of Ref. [71].

Strong and weak thermalization.— For the quenches we
have considered, both the order parameter decay and entangle-
ment growth are slow (Fig. 1). This movitates us to study ther-
malization in our long-range model. Previous studies of the
short-range Ising model have observed rapid (strong) or slow
(weak) thermalization of one-point functions for different ini-
tial states [41, 42, 48, 49, 72–75]. As first shown in Ref. [41],
undamped oscillations (weak thermalization) of one-point ob-
servable occurs within an intermediate time window when the
matrix elements between the initial state and the quasiparticle
state of the quench operator and of the observable are both
non-zero [41, 42]. Rapid decay occurs when this condition
is not satisfied. Numerical results consistent with this finding
have been observed [34, 42, 48, 49, 74]. Here, we illustrate
that these two distinct behaviors also occur in the long-range
Ising model and that slow thermalization can arise when the
quasiparticles are the result of confinement [34, 42, 74].

In order to see this, we consider the time evolution of
two different initial states (with the same quenched Hamilto-
nian): |Z+〉 =

∏
j |↑j〉 (the same state considered before) and

|Y+〉 =
∏
j

1√
2
(|↑j〉 + i |↓j〉) [48]. For |Z+〉, the quenched

operator has the same parity as the two-kink bound state and
thus the matrix elements mentioned above have non-zero val-
ues [41, 42]. We therefore expect slow dynamics with os-
cillations due to the bound quasiparticles [41, 42]. On the
other hand, |Y+〉 does not satisfy this condition which sug-
gests rapid thermalization.

We calculate the difference between the time-
dependent expectation value of single-body observ-
ables, 〈σµ(t)〉, and their thermal expectation value,
〈σµ〉th = tr(e−βΨHσµ)/tr(e−βΨH), where the tempera-
ture, 1

βΨ
, is determined by [76]:

〈Ψ|H |Ψ〉
〈Ψ|Ψ〉

=
tr(He−βΨH)

tr(e−βΨH)
. (5)

Here, |Ψ〉 denotes the initial state. As illustrated in Fig. 4(a),
for |Y+〉, all single-body observables converge to 〈σµ〉th
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FIG. 4. Strong (a) and weak (b) thermalization for different initial
states. (a) 〈σµ(t)〉−〈σµ〉th for initial state |Y+〉. (b) Same as (a), but
for initial state |Z+〉. Parameters: α = 2.3, B = 0.37, L = 20.

rapidly, indicating strong thermalization, as expected. For
|Z+〉, we instead observe strong oscillatory behavior [41, 42],
with Fourier frequencies consistent with the masses of the
bound quasiparticles, around 〈σµ〉th [Fig. 4(b)]. Within the
time window shown, we observe almost no decay of these ob-
servables, indicating much slower thermalization compared to
|Y+〉 [48, 49].

Conclusions and outlook.— We have found that the low-
energy excitations of the long-range transverse-field Ising
model are confined domain-walls. These bound quasiparti-
cles, which arise due to long-range interactions, have clear
signatures in the quench dynamics of the system [34, 41, 42].
Furthermore, our work shows that general quantum mecha-
nisms of quench dynamics developed for short-range inter-
acting systems [41, 42, 44] hold for long-range interacting
systems. These results can be readily investigated in trapped
ion experiments [15] and other AMO system with long-range
interaction [1, 9, 53]. The slow thermalization of one-point
functions induced by long-range interactions has potential
applications for stabilizing non-equilibrium phases of mat-
ter, such as time crystals [50–52] and Floquet symmetry-
protected topological phases of matter [77–81]. Finally, it
would be interesting to study the effects of long-range inter-
actions on quench dynamics of q-state Potts models, which
admit mesonic, as well as baryonic excitations [82–85].
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