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A tragedy of the commons (TOC) occurs when individuals acting in their own self-interest deplete
commonly-held resources, leading to a worse outcome than had they cooperated. Over time, the
depletion of resources can change incentives for subsequent actions. Here, we investigate long-
term feedback between game and environment across a continuum of incentives in an individual-
based framework. We identify payoff-dependent transition rules that lead to oscillatory TOC-s in
stochastic simulations and the mean field limit. Further extending the stochastic model, we find that
spatially explicit interactions can lead to emergent, localized dynamics, including the propagation of
cooperative wave fronts and cluster formation of both social context and resources. These dynamics
suggest new mechanisms underlying how TOCs arise and how they might be averted.

Introduction—In 1968, Garrett Hardin explored a so-
cial dilemma, which he termed the ‘Tragedy of the Com-
mons’ (TOC) [1]. The social dilemma arises when two
individuals choose amongst distinct strategies to utilize a
limited public good. Both individuals receive the maxi-
mal combined benefit if they utilize the public good with
restraint, i.e., if they ‘cooperate’. However, each individ-
ual receives the maximal personal benefit if they utilize
the public good without restraint, i.e., if they ‘defect’,
while their opponent cooperates. As a consequence, in-
dividuals acting rationally will cheat leaving all worse off.
Hardin argued that such a TOC is inevitable [1].

Evolutionary dynamics arising from a TOC dilemma
can be modeled in terms of changes in the frequencies
of individuals from two populations. Indviduals interact
and receive payoffs that depend on their strategy and the
strategy of their opponent [2]. In replicator dynamics [3],
the payoff represents a relative fitness which determines
the growth of cooperators, with frequency x, and of de-
fectors, with frequency 1− x, i.e.,:

ẋ = x(1− x)(rC(x,A)− rD(x,A)). (1)

The values rC and rD denote the context-dependent
fitness payoff to cooperators and defectors respectively,
given the payoff matrix A = [R S

T P ], where rC = Rx +
S(1 − x), rD = Tx + P (1 − x), such that R denotes
the reward to cooperation, T denotes the temptation to
cheat, S denotes the sucker’s payoff, and P denotes the
punishment given mutual defection. A TOC occurs when
T > R, P > S, and P < R. However, in contrast to
standard game theory assumptions, payoffs are unlikely
to remain fixed after repeated decisions that degraded
commonly-held resources.

To address this issue, a recent model [4] considered
dynamics arising given resource-dependent payoff ma-
trices A(n) = A0(1 − n) + A1(n), which interpolate
between A0 and A1, the payoff matrices given deplete
and replete resource states, respectively, i.e., A(n) =
[
R0 S0

T0 P0

]
(1−n)+

[
R1 S1

T1 P1

]
n. This model of coevolutionary

game dynamics included feedback with the environmen-

tal state denoted by 0 ≤ n ≤ 1, such that

ǫẋ = x(1 − x) [rC(x,A(n)) − rD(x,A(n))] , (2)

ṅ = n(1 − n) (θx− (1− x)) . (3)

where ǫ is a speed parameter and θ denotes the strength
of cooperators in restoring the environment. In this co-
evolutionary model, the payoff matrices A0 and A1 can
have markedly different Nash equilibria [5]. For exam-
ple, when defection is uniformly favored when n = 1 and
cooperation is favored when n = 0, then the the system
can exhibit a novel phenomenon termed an ‘oscillatory
tragedy of the commons’ (o-TOC). An o-TOC denotes
a trajectory in the phase plan that approaches a het-
eroclinic cycle. Given a replete environment, the pop-
ulation rapidly switches from cooperation to defection,
which then degrades the environment. In the depleted
environment, cooperators re-establish, improving the en-
vironment, then defectors invade and the cycle repeats.
Other outcomes, including a TOC and the aversion of a
TOC can emerge given other payoff matrices [4].

Individual-based coevolutionary game—This coevolu-
tionary game model is the basis for our development and
analysis of an individual-based framework to assess the
influence of noise (first) and spatially explicit interactions
(second) on the emergent dynamics of social context and
resources. To begin, consider a system comprised of nC

cooperators and nD defectors, such that N = nC + nD.
A single time step consists of N events. In each event,
a randomly chosen individual (the focal player) interacts
with another individual (the opponent) chosen at ran-
dom. The payoff to the focal player influences its prob-
ability to reproduce. Critically in our proposed frame-
work, successful reproduction by the focal player replaces
a randomly chosen third individual (see [6] for a related
public goods model that decouples interaction and re-
production). The following reactions denote those tran-
sitions that lead to a change in the number of cooperators
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FIG. 1. Coevolutionary dynamics of strategies and resources in replicator and IBM dynamics. (left) The dynamics with ‘IBM2’, in which
offspring of the focal player replace the opponent. (right) The dynamics with ‘IBM3’, in which offspring of the focal player replaces a
random individual. In both panels, parameter space is divided according to the sign of R0 −T0, S0 −P0. In each section in the parameter
space, a phase diagram with different A0 in is shown, where the x-axis represents x and the y-axis denotes n. Light gray trajectories are
mean field solutions and black trajectories denote IBM dynamics where arrows denote the flow of time. Visualized IBM trajectories are
the average of 100 replicates with the same parameter set, except for oscillatory dynamics, given phase differences that can arise due to
demographic noise. Common parameters for all replicates: θ = 2, ǫ = 0.5, ∆x = 1, and ∆t = 0.05, A1 = [3, 0; 5, 1]; A0 varies by region.
Full parameter list for A0 in Fig. S1.

or defectors:
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C +

random
player
︷︸︸︷

D
k1−→

focal
︷︸︸︷

C +
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︷︸︸︷

C +
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C

C + D + D
k2−→ C + D + C

D + C + C
k3−→ D + C + D

D + D + C
k4−→ D + D + D

(4)
where ki denote reproduction rates.
In the three-individual framework, the master equation

for the dynamics of cooperators is:

P (nC , τ +∆τ) = P (nC , τ) + T(nC |nC − 1)P(nC − 1, τ)∆τ

+ T(nC |nC + 1)P(nC + 1, τ)∆τ

− T(nC + 1|nC)P(nC , τ)∆τ

− T(nC − 1|nC)P(nC , τ)∆τ +O(∆τ2),
(5)

where the transition rates are:

T(nC + 1|nC) = k1nC
nC − 1

N − 1

nD

N − 1
+ k2nC

nD

N − 1

nD

N − 1

T(nC − 1|nC) = k3nD
nC

N − 1

nC

N − 1
+ k4nD

nD − 1

N − 1

nC

N − 1
.

(6)

In the SI, we derive the expected mean field dynamics for
the frequency of cooperators x ≡ limN,nc→∞

(
nC

N

)
from

the master equation:

ẋ = x(1 − x) [(k1 − k3)x+ (k2 − k4)(1 − x)] . (7)

We recover the replicator dynamics of the coevolution-
ary model when k1 = R(n), k2 = S(n), k3 = T (n), and
k4 = P (n). Hence, transition rates are a function of
resource- and social-context dependent payoffs. In con-
trast, mean field dynamics derived via a two-player indi-
vidual based model formulation (IBM2) result in a logis-
tic dependency on x distinct from the cubic nonlinearity
in Eq. 7 (see SI for derivation and details).

Effect of demographic noise— In order to further evalu-
ate stochastic dynamics of the IBM formulation, we simu-
lated the joint dynamics of resources n and social context
x using N = 104 individuals. A single time step over an
interval ∆t includes N game steps followed by changes
in resource levels, n(t) according to Eq. 3 (see Supple-
mentary Information (SI) for details). Hence, in this for-
mulation stochasticity is introduced only at the level of
the individuals. Given the master equation analysis, we
define reproduction rates ki based on the current environ-
mental state n(t). Consistent with our finding from the
master equation, the simulation results of the individual-
based model involving three players (IBM3) recapitulate
predictions of the mean-field replicator dynamics model
(see FIG. 1-right). Specifically, we identify seven distinct
phases corresponding to the relative magnitude of payoffs
given the resource deplete state. The phases and their
asymptotic behavior agree qualitatively with mean-field
predictions. In contrast, if the focal player reproduces
and replaces the opponent (which we term IBM2, as is
often assumed in two-player variants of spatial games),
then the individual-based simulations diverge from pre-
dictions (see FIG. 1-left) as anticipated from expected
mean field dynamics (see SI).
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There are two notable quantitative differences in the
IBM3 simulations with respect to predictions from repli-
cator dynamics. First, whereas mean-field dynamics pre-
dict convergence to a heteroclinic cycle (see ‘o-TOC’ re-
gion in FIG. 1-right), the IBM simulations stochastically
reach an absorbing state on the boundary. Such a result
is anticipated in any finite size simulation, given that
heteroclinic cycles asymptotically approach the bound-
ary. Second, the mean field model predicts closed periodc
orbits given certain symmetric properties of A0 and A1

(corresponding to the line with slope (T1−R1)/(P1−S1)
in FIG. 1-right.) In contrast, the IBM simulations have
demographic noise, which can lead to repeated oscilla-
tions and convergence to a boundary (see FIG. S3).
Demographic noise and spatial structure—To study the

combined effects of spatial structure and demographic
noise (see [7]) we extended the IBM3 framework to a
2-dimensional fully occupied lattice with L sites per di-
mension given periodic boundary conditions, where the
N = L2 individuals are either cooperators or defectors.
The focal player is selected at random and the oppo-
nent is chosen randomly from the von Neumann neigh-
borhood of the focal player. We denote the position of
the focal player (opponent) as ~rF (~rO). The focal player
reproduces with probability rate km(sF , sO, n̄) given the
strategy set of focal player and opponent, sF and sO, and
the average local environment, n̄ = (n(~rF ) + n(~rO))/2.
Environmental state dynamics n(~r, t) are augmented by
diffusion, i.e.,:

∂n

∂t
= n(1− n) (θx− (1− x)) +Dn∇

2n. (8)

The diffusivityDn controls the redistribution of resources
relative to population dynamics. In the case of finite
diffusion, the corresponding partial differential equation
is replaced by its spatially discretized version (see SI).
Simulations of coevolutionary game-environmental dy-

namics reveal dramatic changes in outcomes given spa-
tially explicit interactions. FIG. 2 compares dynamics of
non-spatial and spatial IBM models with three different
diffusivities, Dn = 0, 1,∞, classifying outcomes based
on whether there is a TOC or not (the latter we term
averted, see SI for criteria). The heat maps show the
proportion of averted cases among all replicates. Spa-
tial interactions enable TOC aversion when cooperation
is favored given a coordination game context (R0 > T0

and S0 < P0, see upper left). However, spatial interac-
tions also restrict the parameter regimes where a TOC
can be averted given an anti-coordination game context
(R0 < T0 and S0 > P0, see bottom right). For long-term
dynamics, we find that oscillating dynamics are typical in
Dn = ∞ cases (see examples in the SI). Such oscillatory
dynamics can spiral inwards when TOC-s are averted or
outwards to the boundary. Of note, amongst IBM mod-
els we only observe a persistent o-TOC when Dn = ∞;
indicating the role of strong spatial coupling to induce
oscillations.
Spatiotemporal dynamics with environmental

FIG. 2. Strategy-resource dynamics given spatial interactions.
Colors in each heat-map denote the fraction of averted dynamics
out of 20 replicates with different A0’s. The horizontal axis of the
heat maps are S0−P0 and the vertical ones are R0−T0. Each grid
on the heat maps has increment 0.1. The diffusivity Dn is showed
in the title of each panel. Other parameters for all replicates are
L = 100, θ = 2, ǫ = 0.5, ∆x = 1, and ∆t = 0.05, A1 = [3, 0; 5, 1].
The white lines mark out the boundary of different dynamics pre-
dicted by the mean field model. Full parameter list for A0 in Fig.
S2.

diffusion—We further investigated spatiotemporal
dynamics focusing on variation in Dn given parameter
regimes with both averted and TOC dynamics. These
regimes correspond to the case where S0 < P0, R0 > T0

and where R0 > −θ(S0 − P0) + T0 (see bottom panels
of FIG. 2). The results of spatially explicit IBM3 model
simulations are shown in FIG. 3 for Dn = 0, 1 and ∞.
Notably, all cases appear to exhibit clustering amongst
cooperators and the cases with heterogeneous environ-
mental dynamics (Dn = 0 and Dn = 1) also appear to
exhibit clustering between cooperators and environmen-
tal resource state. However, there are markedly different
types of emergent spatial patterns give variation in the
diffusivity of environmental resource state. In order
to assess clustering quantitatively, we analyzed the
joint structure of social context and resource levels by
measuring the spatial cross-correlation function:

gCN(r, t) =
L2

A(r)

Σi,j(Σi′,j′xi,j(t) · ni′,j′(t))

Σi,jxi,j(t)Σi,jni,j(t)
, (9)

and the spatial autocorrelation function of cooperator
clustering:

gCC(r, t) =
L2

A(r)

Σi,j(Σi′,j′xi,j(t) · xi′,j′(t))

(Σi,jxi,j(t))2
, (10)

where r <
√

(i− i′)2 + (j − j′)2 ≤ r + 1, and A(r) de-
notes the number of lattice sites within this range in both
cases. We then fit the short-range components of the ob-
served correlation at a fixed time point to a decaying ex-
ponential, i.e., g(r, t) ∼ 1 + α(t)e−r/ξ(t) given pre-factor
α and correlation length ξ.
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The spatial autocorrelation analysis confirms the emer-
gence of clustering amongst cooperators when the TOC
is averted, i.e., gCC(r) > 1 for r → 1 (see black lines
in the sub-panels of FIG. 3). Yet there are marked dif-
ferences in the dynamics of the cross-correlation between
cooperators and the environmental state.

For Dn = 0, the environment and cooperative popu-
lation propagate outward as a wave. The cooperative
population spreads leaving patches of resource replete
environments. The gCN(r) plots shows that x and n
can be positively correlated as a wave initiates but neg-
atively correlated once defectors invade and replace re-
source replete environments, leading to (often disjoint)
patchy distributions of both resources and cooperators.
In contrast, for Dn = 1, small clusters of cooperators and
localized resources form after initial transient dynamics.
This feature is captured by the gCN (r) analysis, revealing
strongly elevated cross-correlation (see the middle row of
FIG. 3) as well as similar pattern in the dynamics of
gCC(r) and gCN(r). We note that these ‘gangs’ of co-
operators and their environmental ‘tail’ are chased by a
dominant group of defectors (see [8] for related findings
in evolutionary PD models without environmental feed-
back). Finally, given Dn = ∞, the resources are uniform
across space. Cooperative clusters grow towards system
sizes due to the strong spatial coupling mediated via fast
resource diffusivity. The single large cooperator cluster
expands and shrinks over time with increasing amplitude,
as evidenced by the elevated autocorrelation of gCC(r) in
the bottom row of FIG. 3, with rapid switches in resource
state, leading to an eventual collapse of the cooperator
population. We do not report gCN(r) given the uniform
distribution of resources given Dn = ∞.

Discussion—In summary, we have developed an
individual-based framework to incorporate the effects of
demographic noise and spatial interactions [7] in coevolu-
tionary game dynamics that couple individual strategies
and the environment. The IBM involving three players in
a game recapitulates and generalizes earlier findings from
a coevolutionary game model, including the emergence of
an oscillatory tragedy of the commons [4]. Spatial inter-
actions can shift the domains in which a tragedy of the
commons may arise when compared to non-spatial mod-
els [9]. Spatially explicit dynamics also lead to novel,
coherent spatiotemporal patterns [10–14], including dif-
fusive clusters, flickering, and wave-like patterns. These
joint dynamics of resources and social strategies suggest
multiple avenues for future study, including formally de-
riving effective PDEs to characterize whether the system
permits propagating waves in the large system limit. It
will also be critical to evaluate the extent to which spa-
tial interactions modify strategy-environment feedback
in proposed generalizations [15] of the replicator frame-
work underlying the present work [4] and in stochastic
games with feedback between behavior and public good
states [16]. Finally, the spatial framework developed here
may also aid efforts to understand how microorganisms
produce and utilize public goods, e.g., siderophores – ex-
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FIG. 3. Spatiotemporal dynamics of resources and cooperation.
The background color represents the environment, while a red
square means a cooperator occupies the lattice site. The empty
sites are occupied by defectors. (Top row) Dn = 0, a circular
wave of cooperative population propagates outward. (Middle row)
Dn = 1, a few small patches of cooperators move around and di-
vide. (Bottom row) Dn = ∞, a large cooperator cluster expands
and shrinks over time with increasing amplitude until extinction.

tracellular iron harvesting enzymes, as but one example
of many [6, 17–23]. Given increasing pressures on limited
resources, we intend to leverage prior work on controlling
mean-field strategy-environment dynamics [24] to iden-
tify ways in which local manipulation of resources, strate-
gies, and/or perceptions can help stabilize and conserve
the commons.
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