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We report tunneling transport in spatially controlled networks of Quantum Hall (QH) edge states
in bilayer graphene. By manipulating separation, location and spatial span of QH edge states via
gate-defined electrostatics, we observe resonant tunneling between co-propagating QH states across
incompressible strips. Employing spectroscopic tunneling measurements and an analytical model,
we characterize energy gap, width, density of states, and compressibility of the QH edge states
with high precision and sensitivity within the same device. The capability to engineer the QH edge
network also provides an opportunity to build future quantum electronic devices with electrostatic
manipulation of QH edge states, supported by rich underlying physics.

PACS numbers: 73.22.Pr, 73.43.Nq, 73.43.Fj

Two dimensional electron gases (2DEG) under strong
magnetic field form quantum Hall (QH) edge states,
which propagate along the sample boundary dissipation-
less. The quality of GaAs/AlGaAs [1, 2] and graphene
[3–5] samples has significantly improved, making integer
and non-Abelian fractional states resulting from exotic
many-body excitations visible [6, 7]. The energy gaps
and electronic compressibility of QH states have been ad-
dressed by several experimental techniques, such as single
electron transistors [8, 9], optical spectroscopy [10] and
capacitive measurement techniques [11]. However, while
these techniques provide a direct access to the bulk prop-
erties, the spectroscopic probe of QH edge states has yet
to be realized. Previously, the structure of chiral one-
dimensional (1D) QH edges has been studied using scan-
ning probe microscopy [12, 13]. The existence of con-
ducting compressible strips (CS) separated by insulating
incompressible strips (IS), has been identified near sam-
ple boundaries. For filling fraction ν in the QH regime,
Landau gaps are directly related to the width of the cor-
responding CS and IS [14]. With electron-electron inter-
action, it has been shown that CS and IS can be recon-
structed into fractionalized 1D modes, including the neu-
tral charge mode [15]. In order to characterize the spatial
and energetic characteristics of the QH edge states, tun-
neling measurement is the most ideal and sensitive tool
[16]. However, in conventional quantum Hall devices, ad-
jacent edge states tend to share the same chemical poten-
tial as the current-injecting contact, therefore the effec-
tive tunneling bias across incompressible strips vanishes.
Chemical potential bias across two sets of QH states can
be established using gate-defined quantum point contacts
(QPC) [17]. However, the tunneling widths near QPCs
are often not uniformly defined, and the QH states are
without a well-defined IS region between them, obscuring
the spectroscopic resolution during tunneling measure-

ments. In this work, we report tunneling measurements
in a gate-defined bilayer graphene (BLG) QH edge state
network [10]. The device structure allows QH states to be
uniformly spaced out and the chemical potential between
them to be robustly-established. The devices consist
of hBN-encapsulated graphene (mobility ∼30m−2/V s)
with three local back gates and a top gate (Fig. 1A), con-
tacted by 1D edge contacts (Fig. 1B) [18, 19]. Voltages
applied to these gates electrostatically divide the sample
into nine regions, determining their carrier density and
the bandgap ∆. To maintain a finite tunnel barrier, we
keep the sign of the displacement field unchanged across
a PN junction.

Fig. 1B-C shows two different configurations of QH
edge states. For each configuration, we keep the bot-
tom two outer gates at VE=-10 V and the top gate at
VT=+8 V, creating insulating regions in the outer mid-
dle sections (regions J2 and L2) and keeping the lead
regions (region J1,J3,K1,K3,L1, and L3) P-doped. We
control the transport properties of the QH edge states
by changing the voltage of the bottom middle gate ∆VB ,
where ∆VB = 0 is defined to be the charge neutrality
point of the center region (K2). The estimated bottom
gate capacitance is C = 2x1011cm−2V −1. We note that
a change in VB in this device scheme does not change
the PN junction height, therefore it does not change the
number of ISs, the width and the barrier height of each
IS.

For ∆VB < 0, K2 becomes P-doped. In this unipo-
lar gate configuration, QH edge states (filling faction ν)
propagating in K2 connect the two sides of the device
(Fig. 1B). For ∆VB > 0 , the bridge region becomes
N-doped. Consequently, the QH edge states with dif-
ferent carrier type are brought into close vicinity at the
PN junction away from the physical edges of the device,
propagating in parallel while separated by a narrow tun-
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Figure 1. (Color online) Gate-defined PNP Networks in Bi-
layer Graphene. (A) Microscope image of the device, con-
sisting of hBN-encapsulated bilayer graphene with three hor-
izontal local back gates and one top gate. (inset) (B,C) Top
gate VT =8V and side back gates VE=-10V are set to define
the insulating region J2 and L2. Only the center gate VB are
swept in the experiment, and we define ∆VB = 0 at the charge
neutrality point of center region K2 (VB = -10V). Simulated
carrier density and edge state configuration at (B) ∆VB =-5V
and (C) ∆VB = 5V. The dashed lines depict the spatial dis-
tribution of edge state current under magnetic field. When
∆VB < 0 (B), current can flow through edge states whose
number equals the filling factor of the center region of the de-
vice, and conventional quantum Hall transport behavior with
quantized conductance plateaus is expected. However, when
∆VB >0 (C), the N-type center region (K2) is surrounded by
a finite-width insulating region with a well-defined ν = 0 Lan-
dau gap and displacement-field-induced bandgap. Magneto-
transport across the sample is dominated by quantum tun-
neling and the device enters non-equilibrium regime. (D) As
a result, while quantized plateaus are clearly visible in the
PPP regime (∆VB <0), a steep change in measured mag-
neto resistance occurs when transitioning to the PNP regime
(∆VB >0).

neling barrier whose height and width are set by the ν=0
QH state of the gapped BLG (Fig. 1C). We note that our
experimental design brings the QH edge states into close
vicinity at the PN junction allowing tunneling measure-
ment without hot-spot formation at physical edges [20–
23]. While non-equilibrium can be achieved selectively
between QH edge states with different valley and spin
polarization in high quality PN junction devices [21, 24],
our device architecture ensures non-equilibrium chemi-
cal potential distribution between all QH edge states by
spatially separating them (see SI).

The different QH edge state configurations result in
distinctly different magneto-transport across the device.
Fig. 1D shows a two-terminal resistance as a function of
∆VB for several different fixed magnetic fields. As the
sign of ∆VB changes from negative to positive, the chan-
nel configuration turns from PPP into PNP. In the PPP

configuration, we find well-defined plateaus correspond-
ing to ν =1 and 2 in K2. As ∆VB increases, the chan-
nel resistance increases steeply. In particular, across the
PPP-PNP boundary (∆VB=0), the resistance increases
more than ten-fold, indicating tunneling transport across
a barrier.

We investigate the transition regime further in Fig. 2A
by plotting the conductance and resistance as a function
of ∆VB and magnetic field B. In the unipolar regime
(∆VB < 0), we observe a series of QH plateaus, at a
relatively low field of 2 T, corresponding to filling fac-
tions ν =1, 2, 3, 4, and 5. In the bipolar regime (∆VB
> 0), however, there is no observable quantized conduc-
tance. Instead, the transport in the device shows two
distinct features: (i) In the low field regime B < BC ∼
4.5 T, the resistance increases slowly. This is followed by
a rapid increase of resistance for B > BC . (ii) Near the
critical field, we observe resistance oscillations that are
approximately independent of ∆VB . These two features
are closely related to the onset of tunneling across QH
edge states, as we discuss in detail below.

For B < Bc, the magnetic length lB =
√

~
eB is longer

than the tunneling barrier width dIS set by the ν 6= 0
incompressible strips (Fig. 2D). Since the decay length
of the Landau level (LL) wave function across the IS is
on the order of lB , the QH edge states along the PN
boundaries tend to be highly equilibrated [13]. The total
resistance across the PNP junction is the sum of the QH
resistances of each doped region: R = − 2h

νe2 + h
ν′e2 , where

ν′ and ν are the filling fraction of the N and P regions,
respectively. Note that ν′ is positive and ν is negative
by definition. Similar transport was observed previously
[22, 23], where full/partial equilibration occurred across
the PN junction. Fig. 2B shows measured resistance
(R), expected resistance with full equilibrium (Re), fit-
ting of the low field data using our analytical quantum
tunneling model in semiclassical regime (RS) and their
ratio (R/Re) as a function of magnet field sweep at ∆VB
=5V (equal carrier density for P and N region, corre-
sponding to the white dashed line in Fig. 2A). In the
low field regime (B < BC), we observe that R ≈ Re as
expected. However, as B approaches BC , R(B) starts to
deviate from Re. For B > BC , R increases exponentially
as shown in Fig. 2B, and tunneling transport between
well separated QH edges dominates (Fig. 2E).

Further quantitative analysis can be made by consider-
ing the tunneling process between QH edge states across
ISs of the width dIS . The current in each QH edge state
is carried by a compressible electronic state with spa-
tially varying chemical potential eVN (y), where y is the
position along the direction of the PN junction and N is
the index for the QH edge states. We consider successive
tunneling between neighboring QH edge states. Current
conservation in a small length dy of the Nth QH edge
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Figure 2. (Color online) Quantum Hall Phase Transition in
PN Configuration. (A) Measured (top panel) resistance and
(bottom panel) conductance across the device as a function of
magnetic field B and central bottom gate voltage ∆VB (and
equivalently in electron density of the center region K2 (nN )).
While the fan diagram is visible in negative ∆VB , the device
shows an unusually sharp magneto resistance rise around BC

= 4.5 T at positive ∆VB (dashed red box). At lower magnetic
field, resonant tunneling between Landau levels on the P and
N side of the PN junction occurs. A zoom in higher resolu-
tion scan with optimized color scale can be found in figure
3C. (B) Measured resistance (R), expected resistance with
full equilibrium (Re), fitting of the low field data using our
analytical quantum tunneling model in semiclassical regime
(RS) and their ratio (R/Re) as a function of magnet field
sweep at ∆VB =5V (equal carrier density for P and N region,
along the double dashed line in A). (C) Magnetic length lB
and calculated incompressible strip width dIS as a function
of field. (D) B < BC , lB > dIS . The system is in the semi-
classical regime, where tunneling occurs only across the gate-
defined ν=0 tunnel barrier, agreeing with RS . (E) B > BC ,
lB < dIS . Incompressible strips becomes well-defined due to
reduced coupling between them. Cascade tunneling occurs
across all ISs, resulting in a steep double exponential increase
in R and R/Re, a deviation from semiclassical description
(RS).

state leads to:

4e2

h
dVN(y) =

− [γN(VN+1(y)− VN(y))− γN−1(VN(y)− VN−1(y))]dy

(1)

, where γN is the tunneling conductance per length be-

tween QH edge states (see SI). This equation serves as
our master equation to describe the observed data.

In the low magnetic field limit lB > dIS , and strong
tunnel coupling between the CS regions effectively smears
out the delineation between IS/CS within each doped
region. This leaves the tunneling across the region to
dominate, and the overall tunneling barrier takes on a
finite value γ0. As a result, each N and P region behaves
as one compressible state with filling factors ν′ and ν.
In this limit, Eq. (1) can be solved analytically (see SI
Section 2) and leads to a simple expression:

R =
V P1 (0)

I0
=

h

e2
[−2

ν

1

1− exp(−αL)
+

1

ν′

1 + exp(−αL)

1− exp(−αL)
],

(2)
where

α ≡ γ0(ν
′ − ν)

ν′ν

h

e2
(3)

, and L is the length of the PN boundary. Note that
this solution correctly reproduces the fully-equilibrated
case at the large tunnel coupling limit where exp(−αL)
vanishes. By fitting this model (see Supplementary Eq
(11)) to the data, we obtained γ0 ≈ 500Ω−1m−1, which
is consistent with our experimental parameters.

As B approaches BC , the tunnel coupling between
neighboring CSs becomes weaker and the transport
across the device occurs via a cascade of tunneling across
the series of ISs (see SI) with incrementally changing
chemical potentials (Fig. 2E). This can only be realized
in wide and uniform ISs enabled by the thick hBN di-
electric employed in our device in contrast to previously
reported devices [21]. The crossover between semiclassi-
cal to quantum transport regime occurs when lB = dIS .
Marked by a sharp change of the magneto resistance scal-
ing law, this phase transition point can be utilized to ac-
curately determine the incompressible strip width dIS .
In addition, this confirms that the IS becomes insulat-
ing with finite-width incompressible region only when
lB > dIS , and the tunneling measurement accurately
probes the compressibility of the participating ISs. From
the electrostatic profile of the PN junction, we estimate
BC ≈ 4.5 T (See SI), in accordance with our experi-
mental observation. When B > BC , Eq (1) leads to an
additional exponential dependence of R on B on top of
the trivial contribution from the ν=0 gap development
(See SI). We use this additional exponential growth of R
to characterize the profile of IS regions (Supplementary
Fig. S3).

We now discuss oscillatory features we observe when
B < BC and lB > dIS . The only appreciable tunneling
across the PN boundary occurs through the ν= 0 re-
gion between ISs of the doped regions. In our device, we
can achieve full experimental control of the energy align-
ment of the Fermi level, P-LLs, and N-LLs by varying the
magnetic field and ∆VB . The magnetic field causes the
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Figure 3. (Color online) Resonant Landau Tunneling in Semi-
classical regime (B < BC). (A) When sweeping B, Landau
level alignment changes from resonance (down-triangle) to off-
resonance (up-triangle), resulting in oscillations of the mea-
sured resistance R periodically with inverse magnetic field
1/B. When sweeping ∆VB , while Landau levels are in reso-
nance, the Fermi level can be temporarily unpinned and jump
across the Landau gap (diamond), resulting into modulations
of oscillation amplitude. (B) R as a periodic function of 1/B
at different electron densities in the center region K2 (nN )
and hole density in region region K1 and K3 (nP ) (C) 2D scan
of the resonant tunneling features verifying that the Landau
level alignments are only sensitive to the PN junction height
instead of individual carrier densities in each respective re-
gion. (Inset) Differentiated data in the range of the dashed
region, a modulation in oscillation amplitude has been ob-
served with a periodicity of the electron filling factor νn=4.
(D) By tracing the peak positions as a function of field and
gate voltage, we extract the spectroscopy bandgap of bilayer
graphene as a function of displacement field D.

two sets of LLs to move in opposite directions in energy,
resulting in oscillation of measured resistance R periodi-
cally with inverse magnetic field 1/B (fig. 3A). To ensure
the energy alignment is only determined by these two ex-
perimental parameters, we conducted the tunneling mea-
surements near zero DC bias with a small effective AC
excitation in this regime. A large finite bias voltage com-
parable to QH gaps could unnecessarily complicate the
energy alignment of Landau levels on P and N sides due
to a significant chemical potential drop across the PN
junction, and potentially suppress the oscillation ampli-
tude when non-resonant breakdown current across the IS
starts to dominate the transport.

The LL filling fraction of each doped region is given
by νN,P = hnN,P /eB, where nN,P are the electron
and hole densities in the N- (K2) and P- (K1, K3) re-
gions, respectively. DOS is periodic in 1/BF , where
BF = h(nN + nP )/e is determined only by the PN junc-
tion barrier height and not by any region-specific carrier
density. We have deliberately designed the experiment

so that the carrier densities in K1, K2 and K3 are si-
multaneously controlled by ∆VB , so that nN + nP stays
constant in the scan, thus keeping the oscillation period-
icity unchanged (Fig. 3A). Fig. 3B shows R as a function
of 1/B for several different fixed gate voltages (different
nN and nP values). We observe that the oscillation in
R is clearly periodical in 1/B. From the periodicity ob-
served in Fig. 3B, we estimated nN+nP = 2 x 1012cm−2,
in good agreement with the density of carriers calculated
from ∆VB and the bottom gate capacitance, confirming
the oscillation is due to resonant tunneling between Lan-
dau levels instead of universal conductance fluctuation
(UCF). The effective energy difference between the res-
onant tunneling peaks also corresponds to the Landau
level splitting. In the field range plotted in Fig.3, this
energy gap is much larger than the expected charging
energy when treating the central region as an effective
quantum dot (1µm x 1µm), and is proportional to the
magnetic field B unlike the charging energy. We deliber-
ately designed each region to be sufficient large (1µm) to
avoid complication by Coulomb blockade (CB), in con-
trast to the small length scale necessary for relatively
smaller quantum Hall systems where the UCF and CB
effects become appreciable [25, 26].

In Fig 3C, we display a map of R as a function of
both ∆VB and 1/B. Here, the oscillation in R ap-
pears as horizontal streaks but with a slight downward
tilt as ∆VB increases. The lowering of the peak with
∆VB is due to the decreasing ν = 0 tunneling barrier
as the displacement-induced BLG band gap decreases.
From the observed slope ∂B/∂VB of the resonant tun-
neling peaks, we can estimate the bandgap ∆ using
∂∆/∂VB = ~e(m−1e + m−1h )∂B/∂VB , where m(e,h) are
the electron and hole effective masses in BLG, respec-
tively. Fig. 3D shows experimentally obtained ∆ as a
function of displacement field D = ε(VT − VB)/dhBN ,
where dhBN = 180 nm is the thickness of the hBN layer,
ε is the dielectric constant of hBN, and VT (VB) are the
local top (bottom) gate voltages. These values are in ac-
cordance with previously obtained values [10], but with
much higher energy resolution of ∼ 0.1 meV.

While keeping the energy alignment of P- LLs and N-
LLs constant with respect to each other, sweeping ∆VB
along the resonant tunneling peaks adjusts the Fermi
level alignment, which should also yield oscillations in re-
sistance. To demonstrate this, we plot in the inset of Fig.
3C the first derivative of the measured resistance dR/dB
in the scan range denoted by the black dashed box in Fig.
3C. Along the resonance lines, we observe that dR/dB
oscillates with a periodicity of ∆νn = 4, which is pre-
cisely the LL degeneracy in the low magnetic field limit.
This agreement confirms that our spectroscopic trans-
port technique can probe in detail the properties of LLs.
Further development in the spatial engineering of QH
edge state will allow us to explore emergent phenomena,
such as the recently discovered quasiparticle interference
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[27, 28], using the spectroscopic tunneling transport tech-
nique we demonstrate in this work. In contrast to con-
ventional QH transport along the QH edge states, our
tunneling measurement is sensitive to both the localized
and extended states, and therefore allows us to probe
the full density of states and the energy profile of QH
states (see SI). The capability of measuring all relevant
physical properties sensitively within a single device pro-
vides a powerful tool in studying QH physics to address
the key remaining questions. The capability to electro-
statically define, separate and guide the QH edge states
can also lead to quantum interferometers to braid exotic
quasiparticles in QH states.
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