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The role of an intrinsic four-body scale in universal few-boson systems is the subject of active
debate. We study these systems within the framework of effective field theory. For systems of up to
six bosons we establish that no four-body scale appears at leading order. However, we find that at
next-to-leading order a four-body force is needed to obtain renormalized results for binding energies.
With the associated parameter fixed to the binding energy of the four-boson system, this force is
shown to renormalize the five- and six-body systems as well. We present an original ansatz for the
short-distance limit of the bosonic A-body wavefunction, from which we conjecture that new A-body
scales appear at NA−3LO. As a specific example, calculations are presented for clusters of helium
atoms. Our results apply more generally to other few-body systems governed by a large scattering
length, such as light nuclei and halo states, the low-energy properties of which are independent of
the detailed internal structure of the constituents.

The universal aspects of few-body systems with large
scattering length have attracted a lot of attention in re-
cent years [1, 2], largely owing to well-controlled exper-
iments involving ultracold atomic gases where the scat-
tering length can be tuned arbitrarily via Feshbach reso-
nances [3]. Nuclear physics, where the scattering lengths
in both nucleon-nucleon S-wave channels are significantly
larger in magnitude than the interaction range set by the
pion mass, falls into the same universality class. An-
other interesting example is given by atomic 4He clusters,
where the two-body scattering length also happens to be
much larger than the van der Waals length.

These systems share a pronounced separation of scales.
When the scattering length a significantly exceeds the
force range, the system properties become independent
of the force details, which can be represented by con-
tact interactions, in analogy with the multipole expan-
sion of classical electrodynamics. Effective field theory
(EFT) implements this idea systematically starting from
a leading order (LO) with only Dirac delta functions.
Finite-range corrections are accounted for at higher or-
ders through delta functions with derivatives. In the two-
body sector, this expansion around the zero-range limit
is equivalent [4] to Fermi’s pseudopotential [5], to non-
trivial boundary conditions [6], and to the effective range
expansion [7].

This idea extends to A-body systems: A-body forces,
which capture aspects of the underlying potential that
only manifests themselves for A > 2, are ordered accord-
ing to their relevance to low-energy physics. For three

identical particles with spin statistics not precluding a
totally symmetric spatial wavefunction—bosons or nucle-
ons, for instance—the zero-range limit is not well defined
with only two-body interactions due to bound-state col-
lapse [8]. In the EFT framework, despite expectations
based on dimensional analysis, a three-body contact in-
teraction must enter at LO to ensure renormalization-
group (RG) invariance [9, 10]. It introduces a scale that
in the unitary limit (a → ∞) determines the position
of a geometric tower of three-body bound states [11].
These Efimov trimers have been observed in cold-atom
systems [12, 13].

It is of fundamental interest to understand whether
this phenomenon repeats in larger systems: when does
an additional particle bring in a new scale from a higher-
body contact interaction? Once such a scale appears,
universality is reduced and the properties of the corre-
sponding system can no longer be predicted entirely on
the basis of systems with fewer particles.

The importance of a four-body parameter has in fact
been the subject of active debate in the literature [14–
20]. In contrast to a zero-range model [17, 20], early
EFT studies [14, 15, 18] of the four-body system found
that no four-body force (and thus no four-body scale)
is required at LO. Recently, Ref. [21] also established
the absence of LO higher-body forces for systems of up
to six particles. Lack of further LO scales means that
Efimov towers exist for more than three bosons [18, 19,
22–25] and that there are correlations between cluster
and trimer binding energies, the atomic equivalent of the
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nuclear Tjon line [26] for four-boson clusters [14] and its
generalization for five- and six-boson clusters [21]. The
properties of unitary bosonic matter are universal when
written in terms of a three-body energy [27], a property
that might be testable in cold-atom experiments [28, 29].

Here, we go beyond LO and address the ques-
tion whether the näıvely construed next-to-leading-order
(NLO) part of the EFT expansion, where range correc-
tions enter in the form of contact interactions with deriva-
tives, is properly renormalized. While subleading orders
have been included perturbatively in the three-boson sys-
tem with success [30, 31], our work is the first to exam-
ine more-boson systems in this way. Our central result is
that a four-body force is required at NLO, which, once
fixed to a single four-body observable, suffices to stabilize
clusters of up to at least six bosons. The relatively small
resulting changes at NLO bode well for the convergence
of the EFT expansion.

EFT description. A system of nonrelativistic spinless
bosons of mass m interacting via a short-range force can
be described by the Lagrangian density

L = ψ†
(

i∂0 +
∇2

2m

)
ψ−C

(0)
0

2
(ψ†ψ)2−D

(0)
0

6
(ψ†ψ)3+· · · ,

(1)

where ψ is the field operator, C
(0)
0 and D

(0)
0 are low-

energy constants (LECs), and the ellipsis represents
terms with more fields and/or more derivatives, enter-
ing at higher orders. The LECs’ super- and subscripts
denote, respectively, the order in the EFT expansion and
the powers of momenta involved.

Translated to the language of ordinary quantum me-
chanics, the interaction terms in Eq. (1) give rise to delta-
function potentials, which need to be regularized. We

choose here a separable form, V
(0)
2 = C

(0)
0 |g〉〈g|, where

g represents a Gaussian regulator in momentum space,
〈q|g〉 = exp(−q2/Λ2) ≡ g(q2). In coordinate space, this
corresponds to a smeared-out delta function which tends
to a delta function as the cutoff parameter Λ→∞. Ob-
servables must not depend on the arbitrary regulariza-
tion except for terms that decrease as Λ increases. This
is achieved via renormalization, when the LEC “runs”

with the cutoff, C
(0)
0 = C

(0)
0 (Λ), in such a way that a

chosen observable—for example, the scattering length—
remains fixed to its physical value.

The term involving D
(0)
0 parametrizes the three-body

force at LO. We include it in the form V
(0)
3 = D

(0)
0 |ξ〉〈ξ|,

where 〈q1q2|ξ〉 = g(q21 + 3q22/4) regulates the three-body
system described by the Jacobi momenta qi. Renormal-
ization is achieved when one three-body observable—for

example a trimer energy—is kept fixed. D
(0)
0 (Λ) has a

log-periodic form [9, 10] representing an RG limit cycle.
Range corrections enter at NLO in the form of a term

that involves four fields and two derivatives, with a new

LEC C
(1)
2 to be determined from a second two-body ob-

servable. The corresponding potential can be written in
momentum space as

〈k|V (1)
2 |k′〉 = C

(1)
2 g(k2)

(
k2 + k′2

)
g(k′2) . (2)

There are also corrections to the LO LECs which do not
introduce new parameters as they merely ensure that the
renormalization conditions used at LO remain satisfied
at NLO. While the LO interactions must be treated non-
perturbatively, NLO consists of a single insertion of the
NLO potential. Renormalization cannot be achieved for
positive effective range, as is the case here, when an in-
consistent subset of higher-order corrections is included
by the nonperturbative solution of the Schrödinger equa-
tion with the NLO potential [32].
Numerical methods. We employ two independent nu-

merical methods to calculate the A-boson binding ener-
gies, both treating NLO corrections perturbatively.

In the first approach, which is more efficient for a pre-

cise numerical determination of D
(0)
0 (Λ), we calculate

A = 3, 4 binding energies by solving, respectively, the
Faddeev and Faddeev-Yakubovsky (FY) equations. We
employ the same numerical framework as in Ref. [33],
which is an implementation of the formalism discussed
in Refs. [14, 15, 34]. The central idea is to decompose
the full wavefunctions into Faddeev(-Yakubovsky) com-
ponents which are related by Bose symmetry. For A = 3,

we set the wavefunction |Ψ(0)
3 〉 = (1 + P )|ψ〉 + |ψ3〉 in

terms of the Faddeev components |ψ〉 and |ψ3〉, where
1 + P with P = P12P23 + P13P23 is an operator that en-
forces Bose symmetry through a combination of appro-
priate permutations Pij of the individual particles. One
obtains the system of equations

|ψ〉 = G0 t P |ψ〉+G0 t |ψ3〉 ,
|ψ3〉 = G0 t3 (1 + P )|ψ〉 , (3)

where G0 denotes the free three-body Green’s function
and the operators t and t3 are solutions of Lippmann-

Schwinger equations with, respectively, V
(0)
2 and V

(0)
3 as

driving terms. It is an advantage of the separable reg-
ulator we use that these operators can be derived ana-
lytically in closed form. The solution for Eq. (3) is ob-
tained in momentum space by projection onto partial-
wave states |q1q2, `1`2〉, where `1,2 are orbital angular-
momentum quantum numbers corresponding to the Ja-
cobi momenta q1,2; they are coupled to total angular
momentum zero for the states we consider in this work.
Upon discretization on a momentum grid, Eq. (3) yields
a homogeneous matrix equation that depends on energy
via G0 and t. Bound states are found at those ener-
gies where the matrix has a unit eigenvalue. The wave-
function components are obtained by solving the corre-
sponding homogeneous equations. Similarly, for A = 4,

|Ψ(0)
4 〉 = (1+P34+PP34)(1+P )|ψA〉+(1+P )(1+P̃ )|ψB〉

involves the additional permutation operator P̃ ≡ P13P24
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as well as components |ψA〉 and |ψB〉 that correspond to
partitions into, respectively, 3 + 1 and 2 + 2 clusters.

In the second approach, which is more efficient for
systems with more particles, we expand the coordinate-
space wavefunction in a correlated Gaussian basis [35],

Ψ
(0)
A (η) =

∑
i

ci Ŝ exp

(
−1

2
ηTAiη

)
, (4)

where η collects the A − 1 Jacobi vectors ηj , Ai is an
(A−1)×(A−1) real, symmetric, and positive-definite ma-
trix, and Ŝ is a symmetrization operator. The coefficients
{ci} and the energy are determined by solving a gener-
alized eigenvalue problem. An important feature of the
Gaussian basis is that it can deal with both short (∼ Λ−1)
and long (∼ a) length scales. To optimize our basis we
use the stochastic variational method (SVM) [35], where
the elements of the matrix Ai are chosen randomly tak-
ing at each step the element that gives the lowest energy.
By the variational principle, the method is guaranteed to
give upper bounds for the binding energies. The imple-
mentation of this method here follows Ref. [21].

Our choice of a separable Gaussian regulator signifi-
cantly simplifies the Faddeev equations. With SVM we
could verify that our results are reproduced with a non-
separable regulator made of local Gaussians in configu-
ration space.

Results. While our conclusions are generally valid for
other universal systems, such as ultracold atomic gases
or atomic nuclei, for concreteness we calculate here the
energies of small clusters of 4He atoms. The 4He atomic
system is characterized by a scattering length a ≈ 90 Å,
which is much larger than the van der Waals length
≈ 5.4 Å that describes the long-range part of the inter-
atomic potential. The dimer was measured experimen-
tally to have a binding energy of about 1.5 mK [36–38].
Two Efimov trimers were measured [39, 40], which are
the remains of the otherwise infinite geometric tower of
Efimov states that emerges as a → ∞. Larger clus-
ters are predicted [41–44] by modern He-He pair poten-
tials [45, 46], but have not yet been observed.

Three data points are needed to fix the coefficients
of our EFT up to NLO, which we choose as the two-
body scattering length and effective range, as well as the
binding energy of the excited trimer. In order to com-
pare with heavier-cluster predictions, we take the val-
ues calculated from a potential, in particular the modern
PCKLJS potential [43, 46]. Once enough data on helium
clusters become available, we can let go of potential-
model input. For now, we use this two-body potential
as a possible representation of short-distance physics;
the inclusion of more complicated interactions [47] would
not affect our conclusions. The dimer binding energy
here is B2 = 1.615 mK, and indeed our EFT con-
verges well toward this value, with BLO

2 = 0.918B2 and
BNLO

2 = 0.991B2. We use the Faddeev equations to
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FIG. 1. (Color online) The tetramer binding energy in units
of the trimer ground-state energy is plotted as function of
the cutoff in units of

√
mB2. LO and NLO results without

a four-body force from the FY (orange diamonds and purple
pentagons) and SVM (red squares and green circles) methods
are in very good agreement. They are compared to the result
calculated directly [43] from the PCKLJS potential, which
coincides (by construction) with the NLO result with a four-
body force (blue triangles). The red dashed curve is a fit in
powers of Λ−1.

fix D
(0)
0 (Λ) and then find good agreement between the

two methods for the ground state trimer binding energy,
BLO

3 = 98.1B2 and BNLO
3 = 73.1B2, to be compared

with the direct potential-model result B3 = 81.6B2 [43].

EFT calculations for four-atom systems so far are
only available at LO. Here we confirm the pioneering re-
sult [14] that the LO tetramer ground-state energy con-
verges as the cutoff Λ is increased. We proceed for the
first time to NLO, where we observe that, in contrast, the
tetramer energy does not converge once range corrections
are included—it instead diverges roughly linearly within
the investigated cutoff range. Our LO and NLO results
for the tetramer ground-state energy as a function of Λ
are shown in Fig. 1. The two methods agree very well.

The observed divergence is a clear indication that a
four-body force is required at NLO, much earlier than
one would expect from a näıve counting of many-body
forces. This promotion is analogous to that of the three-
body force to LO. The simplest four-body force is a con-

tact interaction without derivatives: V
(1)
4 = F

(1)
0 |ζ〉〈ζ|,

where 〈q1q2q3|ζ〉 = g
(
q21 + 3q22/4 + 2q23/3

)
in the same

regularization as before. The LEC F
(1)
0 (Λ) is determined

by demanding that the tetramer energy is fixed at the
value calculated directly from the potential model [43].

With the NLO four-body force thus determined, one
may wonder whether higher-body forces appear at the
same order. We find that this is not the case when we
study the pentamer ground-state energy up to NLO with
SVM, as shown in Fig. 2. At LO the results converge with
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FIG. 2. (Color online) The pentamer ground-state energy is
plotted as function of the cutoff in the same units as Fig. 1.
Shown are results at LO (red squares), NLO without a four-
body force (green circles), and NLO with the four-body force
that renormalizes the four-body system (blue triangles). The
colored dashed curves are fits in powers of Λ−1. The result
calculated [41] from the LM2M2 potential is the dotted line.

Λ, in agreement with the conclusion of Ref. [21] that no
five-body term is needed at this order. Without a four-
body force a divergence is observed at NLO, analogously
to the one observed for the tetramer energy, but once
the NLO four-body force is included, we find the five-
body system properly renormalized as well. This adds
confidence in our order assignment for the dominant four-
body force. Similar conclusions hold for the six-atom
system, as can be seen from the hexamer ground-state
energy in Fig. 3. While the SVM calculation becomes
more difficult as the number of particles increases and
the results are therefore less conclusive for A = 6, we see
overall the same pattern as before. There is no need for
a six-body force up to NLO, either.

Numerical calculations are limited to finite cutoffs. In
a renormalized theory, the residual cutoff dependence
can be absorbed in higher-order operators, which scale
as inverse powers of the breakdown scale. Asymptotic
(Λ → ∞) values obtained from fitting the numerical re-
sults with polynomials in Λ−1 are given in Tab. I, where
the reported error is that from the extrapolation alone. A
reasonable estimate of the EFT truncation error at NLO
is the square of the relative change from LO to NLO. No
results based on the PCKLJS potential are available to
compare with; however, since the tetramer energies based
on the PCKLJS and LM2M2 differ by only 2%, we list
the latter [41] as representative results.

Our numerical calculations are limited by a cutoff
value above which an unphysical, deep trimer state ap-
pears [9, 10]. However, considering an appropriate ansatz
for the wavefunction, the need for a four-body force at
NLO can also be derived analytically. By using the RG
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FIG. 3. (Color online) The hexamer ground-state energy is
plotted as function of the cutoff in the same units as Fig. 1.
Symbols are as in Fig. 2.

LO NLO PCKLJS LM2M2

B4/B3 4.8(1) 4.35(∗) 4.35 4.44(1)

B5/B3 10.8(5) 11.3(3) — 10.33(1)

B6/B3 18(2) 22(3) — 18.41(2)

TABLE I. The A-body 4He binding energies, in units of the
trimer binding energy, for A = 4, 5, 6. (∗) indicates a fit
value. Our results are compared to those obtained with the
PCKLJS [43] and LM2M2 [41] potentials.

framework of Ref. [48], we can connect the counting of the
A-body LECs with the power-law behavior of the A-body
wavefunction at short distances. Our ansatz for the lat-
ter is Ψ

(0)
A → φA/(

∏
j |ηj |) with φA a function that does

not exhibit power-law behavior for ηj → 0. This ansatz is
derived from the Schrödinger equation with short-range
forces in the unitary limit: the 1/|ηj | factors are a triv-
ial consequence of the absence of long-range interactions,
while φA is a non-trivial consequence of the (complicated)
boundary conditions induced by the short-range forces.
The exact form of φA is not known in general, but it is
irrelevant for power counting. This counting follows from
considering matrix elements of A-body contact potentials
between the wavefunctions, the short-distance behavior
of which determines at which order they are required.
For A = 2, 3 our conjecture is readily verified analyti-
cally. Our numerically obtained A = 3, 4 wavefunctions
approximate this behavior for distances shorter than the
trimer/tetramer sizes and larger than Λ−1, i.e., for the
expected domain of validity of the ansatz, which we can
check by assuming a log-periodic form for φA. Further
trust in this ansatz stems from its correct prediction of
LO two- and three-body forces and the absence of a four-
body force at LO. The validity of the ansatz for A ≥ 5
is a conjecture, which implies even less significance for
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all higher-body forces, in agreement with our numerical
results. As such, it establishes the power counting of all
A-body forces for A-boson systems: new scales appear at
NA−3LO.

Conclusions. We find a large dependence of the
ground-state energies for A = 4, 5, 6 bosons on the reg-
ulator when NLO two-body range corrections are added
perturbatively to LO. A four-body force is necessary and
sufficient for renormalization at this order. For A = 4
this result applies also to fermions with four internal
states, such as the nucleon. Previous calculations for
the 4He nucleus [49–51] could not observe this effect be-
cause range corrections were treated nonperturbatively,
thereby breaking RG invariance already at the two-body
level. It will be interesting to investigate in future work
to what extend the enhancement of many-body forces
discussed here is modified in nuclear systems with A > 4
due to the Pauli principle.

The low order of the dominant four-body force of-
fers an explanation for the controversy on the impor-
tance of a four-body scale [14–20], on one hand, and the
need for an additional parameter in the description of
4He droplets [52], on the other. The absence of higher-
body forces up to NLO ensures that correlations between
higher-body and four-body energies survive at this or-
der. The relatively small size of the full NLO corrections
suggests that the EFT expansion is working well for the
4He clusters considered here, despite their large binding
compared with the trimer. We plan to extend our calcu-
lations to light nuclei in the near future.
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