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Maximally entangled two-qubit states (Bell states) are of central importance in quantum technologies. We
show that heralded generation of a maximally entangled state of two intrinsically open qubits can be realized
in a one-dimensional (1d) system through strong coherent driving and continuous monitoring. In contrast to
the natural idea that dissipation leads to decoherence and so destroys quantum effects, continuous measurement
and strong interference in our 1d system generate a pure state with perfect quantum correlation between the two
open qubits. Though the steady state is a trivial product state which has zero coherence or concurrence, we show
that, with carefully tuned parameters, a Bell state can be generated in the system’s quantum jump trajectories,
heralded by a reflected photon. Surprisingly, this maximally entangled state survives the strong coherent state
input—a classical state that overwhelms the system. This simple method to generate maximally entangled states
using classical coherent light and photon detection may, since our qubits are in a 1d continuum, find application
as a building block of quantum networks.

Quantum entanglement between two qubits is essential for
quantum computing and indeed for quantum information pro-
cessing more generally [1]. Bell states, which are maximally
entangled two-qubit states, have perfect quantum correlations
and are therefore especially important. The most common
way to generate Bell states is to measure a joint property
of two components and has been realized in several systems
including, for example, trapped atoms, NV centers, quan-
tum dots, and superconducting qubits (for reviews see [2–
4]). Finding a variety of ways of making Bell states, partic-
ularly ones that use different resources, is important in ad-
vancing quantum information in new directions. Since it is
natural to suppose that classical resources decrease the coher-
ence needed for entanglement, it is particularly interesting to
produce Bell states using classical resources while reducing
the quantum input to a minimum.

A new platform named waveguide QED has recently been
realized in which qubits strongly couple to photons confined
in a one-dimensional (1d) waveguide [5–9]. This platform has
potential applications in integrating quantum components into
complex systems, such as quantum networks [10, 11]. In this
work, we introduce a novel way of generating a Bell state of
two qubits coupled to a 1d waveguide: classical light plus
photon detection leads to entanglement generation heralded
by a reflected photon. Previous results concerning entangle-
ment in waveguide QED [12–27] have shown through analy-
sis of the concurrence, entangled state population, or scattered
wavefunction that a degree of entanglement between qubits
can be generated using the effective interactions mediated by
the waveguide. We show that under continuous monitoring,
maximal entanglement can be generated using the strong in-
terference of photons in 1d and photon detection. This max-
imally entangled state is heralded by detection of a reflected
photon, which makes it attractive for potential applications.

The driving in our system is a strong coherent state—a clas-
sical state that overwhelms the whole system. But surprisingly
the Bell state survives this classical component. What is more
surprising and intriguing is that the steady state of the qubits is
a trivial product state, which has no coherence or concurrence.
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FIG. 1. Schematic of two qubits coupled to a 1d waveguide. We have
a right-going coherent state as input from the left end. Transmitted
and reflected photons are measured using photon counting detection
at the right and left end respectively.

The continuous monitoring unravels this trivial state such that
its trajectories are non-trivial. This “magical” unravelling pro-
vides a particularly sharp illustration of the significance of the
information gained about quantum systems by measurement,
which has wide-reaching implications for advancing the un-
derstanding of quantum information and open quantum sys-
tem.

Seemingly trivial steady state.– The system we want to
study, shown in Fig. 1, consists of two identical qubits cou-
pled to a 1d waveguide under resonant driving by a coherent
state. The input coherent state |α〉 has frequency k, and the
qubits with frequency ωeg = k and raising (lowering) oper-
ators σ±i (i = 1, 2) are separated by distance L. After trac-
ing out the waveguide degrees of freedom making the Markov
and rotating wave approximations, the two qubits can be de-
scribed by a master equation of Lindblad form (see, e.g.,
[12, 13, 17, 28, 29])

d

dt
ρ = i

[
ρ,Hd +Hqq

]
+
∑

i,j=1,2

Γij
(
σ−i ρσ

+
j −

1

2
{ρ, σ+

i σ
−
j }
)
.

(1)
The coherent evolution here has two parts, one describing the
drive Hd = gα(σ+

1 +σ+
2 e

ikL) + h.c. with coupling strength
g, and the other Hqq = Ω(σ+

1 σ
−
2 + σ+

2 σ
−
1 ) describing a

waveguide-mediated qubit-qubit interaction of strength Ω =
2πg2 sin(kL). In the incoherent Lindblad part, the individ-
ual decay rate of each qubit is Γ11 = Γ22 ≡ Γ = 4πg2,
and the cooperative decay Γ12 = Γ21 = 4πg2 cos (kL) is a
waveguide-mediated incoherent coupling. The validity of the
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rotating wave and Markov approximations requires Γ� ωeg
and ΓL�1; thus, kL ∼ 1 is clearly in the regime of validity.

In the strong driving limit α� g (driving power� Γ), by
letting dρ/dt= 0 we obtain a trivial steady state in which the
density matrix is an identity matrix. We consider kL 6= nπ
where n is an integer, in which case the steady state ρ∞ =
(|ee〉〈ee| + |eg〉〈eg| + |ge〉〈ge| + |gg〉〈gg|)/4 is an identity
matrix in the space spanned by {|ee〉 , |eg〉 , |ge〉 , |gg〉}. [For
kL = nπ where n is an even (odd) integer, the steady state
starting from the ground state is an identity matrix in the space
spanned by {|ee〉 , |gg〉 , |S〉 (|A〉)} where the symmetric and
antisymmetric states are |S〉 (|A〉) ≡ (|eg〉 ± |ge〉)/

√
2.] This

density matrix can be written simply as ρ∞ = (11 ⊗ 12)/4
where 1i is the identity matrix in the Hilbert space of i-th
qubit. Therefore, the steady state has no entanglement (con-
currence C = 0 [30]) since it can be written as a product state
and no coherence since there is no off-diagonal element. The
qubit-qubit interaction mediated by the waveguide usually ex-
ploited to generate entanglement (see, e.g., [13]) is completely
washed out by the classical driving and dissipation. However,
the system’s trajectories can be nontrivial, as we now show.

Entanglement within trajectories.– Our description in terms
of a master equation is similar to that used for open quantum
systems [31]. In that context, the interaction between system
and environment typically generates entanglement between
them, and then a trace over the environmental degrees of free-
dom yields a mixed state for the system. During the partial
trace, some information is lost as attested by the nonzero von
Neumann entropy of the mixed state. However, under contin-
uous monitoring, a mixed state can be unraveled as an ensem-
ble of pure states (quantum trajectories) [32–34]. Unlike the
mixed state, this ensemble gives a complete description of the
open quantum system under continuous monitoring.

Within the quantum trajectory description, mixed state en-
tanglement can be defined without ambiguity as the average of
pure state entanglement as follows [35]. Denote the ensemble
of trajectories by {√pi |ψi〉}, where pi is the probability of
trajectory |ψi〉 being detected, and form ρ =

∑
i pi |ψi〉 〈ψi|.

If we divide the open system into subsystems A and B, the
entanglement between A and B within the i-th trajectory is
defined through the usual von Neumann entropy as Si =
−Tr(ρAi log2 ρ

A
i ) with ρAi = TrB(|ψi〉 〈ψi|). The entan-

glement in the ensemble is defined naturally as the average,
S̄ ≡

∑
i piSi.

It has been shown that measuring different quanti-
ties leads to different amounts of entanglement by un-
raveling with different ensembles of trajectories [35–
39]. For example, the trivial steady state above,
ρ∞ = (11 ⊗ 12)/4, can be unraveled nontrivially as
either the ensemble { 12 |Φ

+〉 , 12 |Φ
−〉 , 12 |Ψ

+〉 , 12 |Ψ
−〉} or

{ 12 |gg〉 ,
1
2 |ee〉 ,

1
2 |Ψ

+〉 , 12 |Ψ
−〉}, where |Φ±〉 =

(
|gg〉 ±

|ee〉
)
/
√

2 and |Ψ±〉 =
(
|ge〉± |eg〉

)
/
√

2 are the four con-
ventional Bell bases. The former ensemble yields S̄=1 while
the latter gives S̄ = 1/2 even though they both produce the
seemingly trivial mixed state ρ∞.

Waveguide mediated collective jumps.– Returning to our

system, we suppose that photon counting measurements are
performed at both ends of the waveguide, as shown in Fig. 1.
As shown in our previous work [29], the photon detections at
the left and right end can be described as discrete changes
(quantum jumps) of quantum trajectories through the jump
operators J−L and J−R defined as

J−L ≡
√

2πg(σ−1 + σ−2 e
ikL),

J−R ≡
√

2πg(σ−1 + σ−2 e
−ikL) + i

α√
2π
.

(2)

Note that J−R incorporates interference between the driving
field α and the qubit emission. The master equation for the
two qubits, Eq. (1), can be rewritten in an equivalent form as

d

dt
ρ = i

[
ρ,Hh

]
+
∑
i=R,L

J−i ρJ
+
i −

1

2

{
ρ, J+

i J
−
i

}
, (3)

where Hh = Hqq + 1
2gα(σ+

1 + σ+
2 e

ikL) + h.c. [29]. Based
on the jump operator (2) that corresponds to photon detection,
quantum jump formalism [34] then yields quantum trajecto-
ries described by the stochastic Schrödinger equation (SSE)

d |ψ(t)〉 =
∑
i=L,R

dNi(t)
( J−i√
〈J+
i J
−
i 〉
− 1
)
|ψ(t)〉

+
( (1− i dtHeff)

|(1− i dtHeff) |ψ(t)〉 |
− 1
)
|ψ(t)〉 ,

(4)

where dNi(t) = 0, 1 describes the stochastic process
of a photon being detected with probability 〈dNi(t)〉 =
dt 〈ψ(t)|J+

i J
−
i |ψ(t)〉, dt is the time step, and Heff ≡ Hh −

1
2

∑
i=R,L J

+
i J
−
i is the non-Hermitian effective Hamiltonian

describing the segments of continuous evolution.
It is intriguing that the left jump operator here, J−L ∼ (σ−1 +

eikLσ−2 ), can produce a jump J−L |ee〉 → (|ge〉 + eikL |eg〉)
that yields a maximally entangled state. This derives from
the fact that detection of a reflected photon necessarily comes
from a coherent superposition of the emission from both
qubits, i.e. |ee〉 → |ge〉 and |ee〉 → |eg〉. This route to en-
tanglement generation is in the same spirit as the scheme pro-
posed in [40]. Note the following two requirements. (i) To re-
alize this jump process, the jump must start from |ee〉 or super-
positions of |ee〉 and eigenstates of J−L with vanishing eigen-
values. (ii) To make this maximally entangled state available
for exploitation, it must not be destroyed for some time by
the dynamics, such as the continuous evolution or subsequent
jumps. We now show that when kL = (n+ 1/2)π and the
driving |α〉 is strong, these two requirements can be met.

Hybridizing jumps and state diffusion.– In the strong driv-
ing limit α/g→∞, each right jump leads to an infinitesimal
change of the wavefunction, since the right jump operator J−R
is dominated by the constant term. However, within a time
step dt there will be infinitely many right jumps due to the
large photon flux given by the strong coherent state. There-
fore, the quantum trajectory will be continuous, as in classic
homodyne detection [34] when left jumps are absent and the
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photon current is measured. Then, the number of right jumps
detected in a time step, denoted dNR(t), can be written as

dNR(t) = 〈dNR(t)〉+
|α|√
2π
dξ(t), (5)

where dξ(t) is stochastic noise. Since the coherent state dom-
inates the signal detected, Gaussian noise with 〈dξ(t)〉 = 0
and 〈dξ(t)2〉 = dt is a good approximation. By expanding in
1/|α|, the SSE Eq. (4) is simplified to (for details see [41])

d |ψ̃(t)〉 = dt
(
− i(gαc+ + gα∗c− +Hqq)− ie−iθπg2 〈(ieiθc+ − ie−iθc−)〉 c− − πg2c+c− − 1

2
J+

L J
−
L

)
|ψ̃(t)〉

+ dξ(t)
(
− ie−iθ

√
2πgc−

)
|ψ̃(t)〉+ dNL(t)

( J−L√
〈J+

L J
−
L 〉
− 1
)
|ψ̃(t)〉 ,

(6)

where |ψ̃〉 is an unnormalized wavefunction, α= |α|eiθ, 〈·〉=
〈ψ| · |ψ〉, and c± ≡ (σ±1 + e±ikLσ±2 ) is the operator part of
J−R such that J−R =

√
2πgc−+ iα/

√
2π. If the left jumps are

dropped, note that this SSE becomes a quantum state diffusion
equation with fluctuations given by a Weiner process dξ(t).

Heralded Bell state.– We wish to focus on the case kL =
(n+1/2)π, where n is an even (odd) integer, and define two
maximally entangled states |±i〉 ≡ (|ge〉± i |eg〉)/

√
2 (Bell

states). Then, the operator c− (J−L ) is a lowering operator in
the space spanned by {|ee〉 , |−i〉 , |gg〉} while J−L (c−) is a
lowering operator in the space spanned by {|ee〉 , |+i〉 , |gg〉}.
In the following, we let kL=π/2, i.e. the qubit separation is a
quarter wavelength. For other even n, the conclusions are the
same; for odd n, they hold upon switching the roles of |±i〉.

The energy level diagram for kL = π/2 is shown in
Fig. 2(a). The quantum diffusion process given by the op-
erator c± causes |gg〉 ↔ |−i〉 ↔ |ee〉, and the left jump
process causes |ee〉 → |+i〉 → |gg〉. Thus, the two maxi-
mally entangled states |±i〉 are dynamically separated. The
ground state of the qubits |gg〉 will be driven to the excited
state |ee〉, from which there is a finite probability for a left
jump. In that case, the two qubits jump to the maximally en-
tangled state |+i〉, while at the same time a left-going (re-
flected) photon is detected. The qubits will stay in |+i〉 un-
til a second left jump occurs, taking the qubits back to |gg〉.
The whole process then repeats. Thus, there are repeated win-
dows of maximally entangled state |+i〉, whose lifetime is
1/ 〈+i|J+

L J
−
L |+ i〉 = 1/Γ, each heralded by a reflected pho-

ton.
An example trajectory is shown in Fig. 3(a) for α = 100.

There are clearly time windows of maximal entanglement,
whose birth and death are heralded by the detection of re-
flected photons. The populations of the energy levels show
that the qubits are in the |+i〉 state in the maximal entan-
glement windows and are dynamically decoupled from the
other three levels in these windows. The small deviations
from maximal entanglement that can be seen are due to the
effective qubit-qubit interaction term Hqq that exchanges ex-
citations between the two qubits and so leads to the process
|+i〉 ↔ |−i〉. This term (∼ g2) is suppressed by the strong
driving term (∼ g|α|) as shown in [41], which is the reason

why strong driving is needed. Outside the windows of maxi-
mal entanglement, the dynamics is dominated by Rabi oscil-
lations in a three-level system with fluctuations coming from
the Weiner process.

This special dynamics is encoded in the behavior of the
second-order correlation function g

(2)
L (τ) of the reflected

light, shown in Fig. 2(b). g(2)L starts at 1 and then oscillates
at the Rabi frequency with an envelope that decays in a time
of order Γ−1. It is bounded by 2 and reaches maximal points
when |gg〉 is driven to |ee〉 (see [41] for details).

When parameters are detuned from their ideal values (ei-
ther k or L), the dynamics becomes more complicated than
shown in Fig. 2(a), with for instance a (weak) direct connec-
tion between the left and right sides. For small detuning, the
dynamics will be qualitatively similar; we leave a quantitative
study of these features to future work.

Imperfect photon detection.– To understand the role and im-
portance of the information gained by observing a quantum
system, we introduce information loss through imperfect pho-
ton detection. The effect of such loss is modeled using the
jump operators

√
ηiJ
−
i , where i= R,L and ηi < 1 is the effi-

ciency of photon detection [34]. Then the SSE (6) becomes a
stochastic master equation (SME) (for details see [41]),

|�ii

|eei

|+ii

|ggi

J�
L

J�
L

c±

c±

(b)(a)

FIG. 2. (a) Energy level diagram for kL = π/2. Red and blue ar-
rows represent left jumps and driving, respectively, |±i〉 ≡ (|ge〉 ±
i |eg〉)/

√
2, J−L is the left jump operator, and c± comes from the

right jump operator J−R . The effective qubit-qubit interaction Hqq is
suppressed by the strong driving. (b) Second order correlation func-
tion for the reflected photons calculated from input-output theory.
(Parameters: kL = π/2, α = 100.)
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(a):
η = 1

(b):
η = 0.95

FIG. 3. Example trajectories of entanglement (first row) and populations (second row) for (a) perfect photon detection and (b) lossy photon
detection with efficiency ηi=L,R =η=0.95. The entanglement for pure states in (a) and mixed states in (b) is quantified using the von Neumann
entropy S and the entanglement of formation SF , respectively. The times at which quantum jumps occur are marked with blue triangles.
Longer trajectories, from Γτ = 0 to 20, are shown in [41]. (Parameters: kL = π/2, α = 100, qubits initially in the ground state |gg〉.)

dρ̃s(t) = dt
(
i[ρ̃s, Hqq + gα∗c− + h.c.] + (1− ηL)J−L ρ̃sJ

+
L + 2πg2c−ρ̃sc

+ − 1

2
{ρ̃s, J+

L J
−
L + 2πg2c+c−}

)
+ dξ(t)

√
ηR

(
− ie−iθ

√
2πgc−ρ̃s + h.c.

)
+ dNL(t)

( J−L ρ̃sJ
+
L

Tr[J−L ρ̃sJ
+
L ]
− ρ̃s

)
,

(7)

for trajectories of mixed states ρ̃s [42] due to loss of infor-
mation about the system. The probability of photon detection
now becomes 〈dNL〉=ηLdtTr[ρsJ

+
L J
−
L ] in terms of the nor-

malized density matrix ρs = ρ̃s/Tr[ρ̃s]. Other information
loss mechanisms, such as the coupling of the qubits to chan-
nels other than the waveguide, can be taken into account by
simply adding additional Lindbladian dissipators to Eq. (7);
however, this will produce no qualitative change in our results
and so is left to the interested reader.

We quantify the entanglement for each mixed trajectory us-
ing the entanglement of formation SF [30]. To define SF,
consider a “purification” of a mixed state, by which is meant
a pure state of the system plus environment that yields the
known mixed state through partial trace. The entanglement
entropy of a purification is simply that of the two qubits, S̄,
conditioned on measurement of the environment (photon de-
tection here). The entanglement of formation SF is the mini-
mum entanglement entropy for all possible purifications of a
mixed state, and so gives a lower bound on the entanglement
contained in a mixed trajectory. A subtle point should be em-
phasized here: information gained about a quantum system
constrains possible purifications and therefore gives a differ-
ent lower bound. For our system (assume ηi=η for now), for
example, if η = 0, i.e. no photons are measured so no infor-
mation is gained, Eq. (7) becomes Eq. (3) whose steady state
is 11 ⊗ 12 and SF = 0. As η increases, more information
is gained and the number of possible purifications decreases.

When η=1, Eq. (7) becomes Eq. (6), which becomes the only
way to purify given the physical setup.

An example trajectory for η = 0.95 is shown in Fig. 3(b).
As can be seen, the information loss leads to very different
behavior. In the first window, the entanglement SF and the
|+i〉 population do not jump up to 1 as for perfect photon
detection. This is because there is a possibility that photons
have been emitted without being detected, as shown by the
term (1 − ηL)J−L ρ̃sJ

+
L in Eq. (7), which makes the trajec-

tory be in the space spanned by all four energy levels. When
a photon is detected, the trajectory is projected to a space
spanned by {|+i〉 , |gg〉} through processes |ee〉 → |+i〉 and
|+i〉 → |gg〉. In the third window, although the qubits jump
to |+i〉, its population keeps decreasing with time. This is
because of the undetected decaying process |+i〉 → |gg〉.

Only one detector needed.– Even though the scheme pro-
posed here is not robust against photon detection loss at the
left end, it works independently of the photon detection effi-
ciency at the right end. It can be seen in Eq. (7) that, as long
as ηL = 1, the continuous part describes time evolution of a
mixed state in the space spanned by {|ee〉 , |−i〉 , |gg〉} and
the jump part still describes detection of reflected photons,
which project the |ee〉 〈ee| component onto a pure state |+i〉
as shown in Fig. 2(a) [41]. That is, the scheme still works even
without photon detection at the right end (ηR = 0).

Conclusion and outlook.– In summary, we have shown
that for two qubits coupled to a waveguide separated by
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(n/2 + 1/4) wavelengths, a heralded Bell state can be gen-
erated using classical driving and photon counting detection.
Although the steady state is a trivial product state, the con-
tinuous monitoring unravels the master equation such that a
Bell state is dynamically decoupled from the other three levels
during the continuous part of the evolution. Discrete jumps,
heralded by detections of reflected photons, project the wave-
function onto the Bell state. This physical example that non-
entangled mixed states can have entangled trajectories calls
for careful usage of commonly used entanglement measures,
such as concurrence, especially when measurement is present.
Since the qubits are already in the continuum and coupled to
itinerant photons, the method presented here will have partic-
ular application in integrating quantum components into com-
plex systems [10, 11].

The importance of the information gained by observing
a quantum system is shown by introducing information loss
caused by imperfect photon detections. A small information
loss causes the quantum entanglement to behave very differ-
ently. This implies that methods to stabilize the Bell state,
such as bath engineering [43], are needed in applications.

In this work, the Markov approximation has been applied,
which is valid when the qubit separation is not too large. It
will be interesting to explore in the future the effects caused
by time delayed feedback in the non-Markovian regime [16,
17, 44–50], which is important for the generation of remote
entanglement between qubits.
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