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Magnetic energy (ME) and kinetic energy (KE) in ideal incompressible MHD are not global
invariants and, therefore, it had been justified to discuss only the cascade of their sum, total energy.
We provide a physical argument based on scale-locality, along with compelling evidence that ME
and KE budgets statistically decouple beyond a transitional “conversion” range. This arises because
magnetic field-line stretching is a large-scale process which vanishes on average at intermediate and
small scales within the inertial-inductive range, thereby allowing each of mean ME and KE to
cascade conservatively and at an equal rate, yielding a turbulent magnetic Prandtl number of unity
over these scales.

Magnetohydrodynamic (MHD) turbulence is of
fundamental importance to many fields of science,
including astrophysics, solar physics, space weather,
and nuclear fusion. The Reynolds numbers of such
flows are typically very large, giving rise to plasma
fluctuations with power-law spectra over a vast
range of scales where both viscosity and resistiv-
ity are negligible. We call such a range “inertial-
inductive” since ideal dynamics dominate. There
are several competing theories for the spectrum of
strong MHD turbulence over the inertial-inductive
range [1–5], all of which assume scale-locality of the
energy cascade, which has been shown to hold [6].

In a scale-local cascade, energy transfer across
scale ℓ is predominantly due to scales within a mod-
erate multiple of ℓ [7]. This gives rise to an inertial-
inductive scale range over which the flow evolves
without direct communication with the largest or
smallest scales in the system.

In MHD turbulence, only the sum of magnetic and
kinetic energy (KE and ME, respectively), i.e. total
energy, is a global invariant of the inviscid unforced
dynamics. Therefore, it has been justified to discuss
only the cascade of total energy, but not of KE or
ME separately, which are coupled by magnetic field-
line stretching. In principle, the process of magnetic
field-line stretching can operate at all scales, giving
rise to various phenomena such as Alfvén waves.

We shall show here that magnetic field-line
stretching is a large-scale process, which operates
over a “conversion range” of scales of limited extent
and vanishes on average at intermediate and small
scales in the inertial-inductive range [8]. Over the

ensuing part of the inertial-inductive range, mean
KE and ME cascade conservatively and at an equal
rate to smaller scales despite not being separate in-
variants.

Our findings are important in subgrid scale mod-
eling of systems such as accretion disks, whose evolu-
tion is controlled by magnetic flux through the disk
[9–11]. The strength of the magnetic field is de-
termined by a balance between (i) turbulent advec-
tion (or turbulent viscosity) which accretes the field
radially inward, and (ii) turbulent resistivity which
diffuses it outward [12–15]. Other applications are
outlined in the conclusion.

We start from the incompressible MHD equations
with a constant density ρ:

∂tu+ (u·∇)u = −∇p+ J×B+ ν∇2
u+ f , (1)

∂tB = ∇× (u×B) + η∇2
B. (2)

Here u is the velocity, and B is the magnetic field
normalized by

√
4πρ to have Alfvén (velocity) units.

Both fields are solenoidal: ∇·u = ∇·B = 0. The
pressure is p, J = ∇×B is (normalized) current
density, f is external forcing, ν is viscosity, and η is
resistivity.

In a statistically steady state, the space-averaged
KE and ME budgets are, respectively,

〈SijBiBj〉 = ǫinj − ν〈|∇u|2〉, (3)

〈SijBiBj〉 = η〈|∇B|2〉, (4)

where 〈...〉 is a spatial average, Sij = (∂jui+∂iuj)/2
is the strain rate tensor, and ǫinj = 〈f ·u〉 is kinetic



energy injection rate. It is clear from eqs. (3)-
(4) that mean KE-to-ME conversion due to mag-
netic field-line stretching is positive and bounded:
0 ≤ 〈B·S·B〉 ≤ ǫinj. The bound holds in the pres-
ence of an arbitrarily strong uniform magnetic field
B0, indicating significant cancellations. This can be
understood by considering that in a turbulent flow,
the strain S, being a derivative, is dominated by the
small-scales, whereas B is dominated by the large-
scales, near the magnetic spectrum’s peak, leading
to decorrelation effects.

To analyze how magnetic field-line stretching op-
erates at different length-scales, we utilize a coarse-
graining approach for diagnosing multi-scale dynam-
ics [7, 16]. A coarse-grained field which contains
modes at length-scales > ℓ is defined by f ℓ(x) =∫
drGℓ(r − x)f(r), where Gℓ(r) ≡ ℓ−3G(r/ℓ) is a

normalized kernel with its main weight in a ball
of diameter ℓ. Coarse-grained MHD equations can
then be written to describe uℓ and Bℓ, along with
corresponding budgets for the quadratic invariants
at scales ≥ ℓ, for arbitrary ℓ in contrast to the
mean field approach [17, 18] (see [16] and references
therein). Hereafter, we drop subscript ℓ when possi-
ble.

KE and ME density balance at scales > ℓ are,

∂t(
|u|2
2

) +∇·[· · · ]

= −Π
u

ℓ − SijBiBj − ν|∇u|2 + f ·u, (5)

∂t(|B|2) +∇·[· · · ]

= −Π
b

ℓ + SijBiBj − η|∇B|2, (6)

where ∇·[· · · ] represents spatial transport terms.
Dissipation terms, ν|∇u|2 and η|∇B|2, are math-
ematically guaranteed to be negligible [16, 19] at
scales ℓ ≫ (ℓν , ℓη), with ℓν and ℓη the viscous and
resistive length scales, respectively.

The first term on the RHS of eq.(5), Π
u

ℓ , ap-
pears as a sink in the KE budget of large scales
> ℓ and as a source in the KE budget of small
scales < ℓ [16]. It quantifies the KE transfer across
scale ℓ, and is defined as Π

u

ℓ ≡ −Sijτ ij , where
τ ij = τℓ(ui, uj) + τℓ(Bi, Bj) is the sum of both the
Reynolds and the Maxwell stress generated by scales
< ℓ acting against the large-scale strain, Sij . Sub-

scale stress is defined as τℓ(f, g) = (fg)ℓ − f ℓgℓ for

any two fields f and g. Similarly, Π
b

ℓ ≡ −Jℓ·εεεℓ in eq.
(6) quantifies the ME transfer across scale ℓ, where
εεεℓ ≡ u×B−u×B is (minus) the electric field gener-

ated by scales < ℓ acting on the large-scale current,
J = ∇×B, resulting in a “turbulent Ohmic dissipa-
tion” to the small scales.
Term Bℓ·Sℓ·Bℓ appears as a sink in eq.(5) and a

source in eq.(6), representing KE expended by the
large-scale flow to bend and stretch large-scale B-

lines. Unlike the cascade terms Π
u

ℓ and Π
b

ℓ, which in-
volve large-scale fields acting against subscale terms
(τττ ℓ and εεεℓ), Bℓ·Sℓ·Bℓ is purely due to large-scale
fields and does not participate in energy transfer
across scale ℓ. A more refined scale-by-scale anal-
ysis in [6] showed how energy lost or gained from
one field (u or B) by line stretching reappeared in
or disappeared from the other field at the same scale.

In a steady state, space-averaging eqs. (5),(6) at
any scale ℓ in the inertial-inductive range, L ≫ ℓ ≫
(ℓν , ℓη), yields

〈Πu

ℓ 〉 = ǫinj − Cub(ℓ), (7)

〈Πb

ℓ〉 = Cub(ℓ), (8)

where we have dropped the dissipation terms and
assumed that forcing is due to modes at scales ∼
L ≫ ℓ, such that f ℓ = f . Mean conversion, Cub(ℓ) ≡
〈SijBiBj〉, in eqs. (7),(8) quantifies the cumulative
KE-to-ME conversion at all scales > ℓ.

Using scale-locality of the cascade terms, Π
u

ℓ and

Π
b

ℓ, which was proved in [6], we will now argue that
mean magnetic field-line stretching is primarily a
large-scale process which vanishes at intermediate
and small scales within the inertial-inductive range.
Note that the scale-locality discussed in [6, 7] is “dif-
fuse” [20] and states that contributions from dis-
parate scales decay only as a power-law of the scale
ratio.
Define ℓd as the largest scale at which non-ideal

microphysics becomes significant, ℓd = max(ℓν , ℓη).
Define the cumulative KE-to-ME conversion at
scales > ℓd by Cub

d ≡ Cub(ℓd), which is not necessar-
ily equal to the unfiltered 〈B·S·B〉 due to possible
contributions from scales < ℓd [see discussion shortly
after eq. (10) below].
Define ℓs as the largest scale at which Cub(ℓs) =

Cub
d . We’ll argue that (i) ℓs 6= ℓd and (ii) Cub(ℓ) =

Cub
d for all scales ℓs > ℓ ≫ ℓd.
First, assume ℓs = ℓd. This implies that as func-

tions of ℓ, Cub(ℓ) = 〈Πb

ℓ〉 = ǫinj − 〈Πu

ℓ 〉 depends on
dissipative parameters ν or η. However, 〈Πu

ℓ 〉 and

〈Πb

ℓ〉 are scale-local in the inertial-inductive range [6]
and are insensitive to the microphysics when ℓ ≫ ℓd.
Therefore, ℓs 6= ℓd. Second, if Cub(ℓ) 6= Cub

d over
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ℓs > ℓ ≫ ℓd, then Cub(ℓ), which we assume is contin-
uous, will have an extremum at a scale ℓ∗ within that
range [since Cub(ℓs) = Cub(ℓd) = Cub

d ]. Therefore,

〈Πu

ℓ 〉 and 〈Πb

ℓ〉 will also have extrema, indicating the
existence a special scale ℓ∗ in the inertial-inductive
range, in conflict with scale-invariance of the ideal
MHD dynamics.

Therefore, Cub(ℓ) → Cub
d within a conversion range

L > ℓ > ℓs and, over the ensuing range ℓs > ℓ ≫ ℓd,
it saturates at Cub(ℓ) = Cub

d . Since Cub(ℓ) mea-
sures the cumulative KE-to-ME conversion at all
scales > ℓ, saturation implies a zero contribution
from ℓs > ℓ ≫ ℓd. We conclude that mean KE-
to-ME conversion, 〈SijBiBj〉, is a large-scale pro-
cess within the inertial-inductive range, acting over
a conversion range L > ℓ > ℓs of limited extent,
i.e. the scale-range does not increase asymptotically
with the Reynolds number. Mean KE and ME bud-
gets decouple in the absence of conversion over the
“decoupled range” of scales, ℓs > ℓ ≫ ℓd:

〈Πu

ℓ 〉 = ǫinj − Cub
d , (9)

〈Πb

ℓ〉 = Cub
d . (10)

With the RHS of eqs.(9),(10) being independent of
scale ℓ, KE and ME each cascades conservatively
after the mechanism coupling them halts. Scale-
locality suggests that the normalized KE and ME

cascade rates, 〈Πu〉/ǫinj and 〈Πb〉/ǫinj, should have a
universal value of order unity over ℓs > ℓ ≫ ℓd, re-
gardless of the forcing, Pm = ν/η, or B0. Note that
scale ℓs at which the budgets decouple is within the
inertial-inductive range, despite the well-known non-
equipartition of KE and ME spectra in that range
[21–24] (See Fig. 8 in the supplemental material
(SM) [25]).

While the above argument suggests that Cub(ℓ)
should become constant at scales smaller than the
conversion range, it only applies within the inertial-
inductive range, L ≫ ℓ ≫ ℓd. It is possible for Cub(ℓ)
to vary again when transitioning to scales . ℓd. An
example is the viscous-inductive (Batchelor) range,
ℓν ≫ ℓ ≫ ℓη, over which a scale-by-scale analysis in
[6] showed that magnetic field-line stretching can act
as a forcing term in the ME budget, consistent with
our understanding of high Pm flows [26, 27]. The
above argument for saturation of Cub(ℓ) breaks down
at scales . ℓd, such as in the viscous-inductive range
where scale-locality does not hold due to a smooth
velocity field [6].

Our conclusions are supported by a suite of pseu-

TABLE I. Each suite of Runs was carried out at different
Reynolds numbers at 2563, 5123, and 1,0243 resolutions.
Run V was also conducted at 2,0483 resolution. Pm = ν/η

is magnetic Prandtl number. Bmax

k
=

√

maxk[Eb(k)] is at

the magnetic spectrum’s [Eb(k)] peak. ABC (helical) and
TG (non-helical) forcing were applied at wavenumber kf .
More details are in the SM [25].

Run Forcing kf Pm |B0|/Bmax
k

I ABC 2 1 0

II ABC 2 1 10

III TG 1 1 0

IV ABC 1 2 0

V ABC 2 1 2

dospectral Direct Numerical Simulations (DNS) up
to 2,0483 in resolution with phase-shift dealiasing,
using hyperdiffusion and other parameters summa-
rized in Table I.

Figure 1 shows results from the five flows we con-
sider, at the highest resolution (see SM [25] for lower
resolution runs and evidence of convergence). In all
runs, total energy, being a global invariant, is trans-
ferred conservatively across scales L ≫ ℓ ≫ ℓd, as
indicated by a scale-independent total energy flux,

〈Πℓ〉 = 〈Πu

ℓ + Π
b

ℓ〉. Both Π
u

ℓ and Π
b

ℓ decay to zero
at scales . ℓd, when the nonlinearities shut down
in the dissipation range. Mean KE-to-ME conver-
sion, Cub(ℓ), increases from 0 at the largest scales
to ≈ Cub

d ≈ ǫinj/2 at an intermediate scale ℓs within
the inertial-inductive range. Over the ensuing range,
ℓs > ℓ ≫ ℓd, Cub(ℓ) is scale-independent, indicat-
ing a negligible contribution to magnetic field-line
stretching at these scales. There is a slight increase
in Cub(ℓ) in the dissipation range, at scales . ℓd
where our argument is not expected to hold due to

a lack of scale-locality. In all cases, 〈Πb

ℓ〉 ≈ Cub(ℓ)
and Π

u

ℓ ≈ ǫinj − Cub(ℓ) over the inertial-inductive
range, consistent with eqs. (7),(8). Beyond the con-
version range, scale-transfer becomes independent of

ℓ, 〈Πu

ℓ 〉 ≈ ǫinj−Cub
d and 〈Πb

ℓ〉 ≈ Cub
d over ℓs > ℓ ≫ ℓd,

consistent with eqs. (9),(10), and indicative of a con-
servative cascade of KE and ME energy, respectively.
In all runs, we observe that the KE and ME cas-

cade rates become equal in magnitude, 〈Πu

ℓ 〉 ≈ 〈Πb

ℓ〉,
over ℓs > ℓ ≫ ℓd, with magnetic field-line stretch-
ing channeling ≈ 1/2 of the injected energy to the
magnetic field, regardless of the forcing, Pm, or B0,
consistent with scale-locality.

Among the five cases in Fig. 1, the conversion
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FIG. 1. The first five panels show 〈Π〉 = 〈Π
u
+Π

b
〉, 〈Π

u
〉, 〈Π

b
〉, and 〈SijBiBj〉 as a function of k ≡ 2π/ℓ from our highest

resolution Runs (1,0243 for Runs I to IV and 2,0483 for Run V. See SM [25] for lower resolutions). In top-left panel, conversion

(decoupled) range is shaded red (blue). All plots are time-averaged and normalized by ǫinj. The horizontal straight dashed line
is at 0.5. Bottom-right panel shows a log-log plot of relative residual conversion, Rub(k)/Cub

d
, and a reference black-dashed

line with a −2/3 slope, suggesting that KE-to-ME conversion saturates in a manner consistent with scale-locality [6].

range is widest in the presence of |B0|/Bmax
k = 10

(Run IIc). However, according to our argument,
its extent cannot increase indefinitely with an in-
creasing dynamic range of scales (or Reynolds num-
ber, Re). After all, 〈B·S·B〉 is bounded even in
the |B0| → ∞ limit. Indeed, a plot of the relative
residual conversion Rub(ℓ)/Cub

d ≡ 〈Bℓd ·Sℓd ·Bℓd −
Bℓ·Sℓ·Bℓ〉/〈Bℓd ·Sℓd ·Bℓd〉 in Fig. 1 (and Fig. 5
in SM [25]) decays at least as fast as a power-
law as ℓ → ℓd, consistent with what is expected
from scale-locality (we take ℓd as the scale at which
〈Πℓ〉 = ǫinj/2). Moreover, plots of Cub(ℓ) at increas-
ing Re (Fig. 4 in SM [25]) show a clear convergence
to Cub

d ≈ ǫinj/2.

The negligible mean KE-to-ME conversion at
small scales within the decoupled range might seem
counterintuitive at first. After all, a hallmark of
MHD turbulence are Alfvén waves which are fastest
at small scales. The decoupling of ME and KE
budgets poses no contradiction since it is only in
the mean, which allows for decorrelation effects
at small scales similar to those arising in com-
pressible turbulence [28, 29]. Utilizing the simul-
taneous information in both scale and space af-
forded by our coarse-graining approach, we analyze
Bℓ·Sℓ·Bℓ(x) acting on scales > ℓ and the resid-

ual conversion within the inertial-inductive range,
Bℓd ·Sℓd ·Bℓd(x)−Bℓ·Sℓ·Bℓ(x), as a function of space
x in Fig. 2. For an intermediate scale ℓ = 2π/30
from Run IIc (and Run Ic in Fig. 7 of SM [25]),
Fig. 2 shows how magnetic field-line stretching,
which is concentrated in magnetic filaments, is an
order of magnitude more intense at scales smaller
than ℓ = 2π/30 compared to larger scales. Yet,
the small-scale contribution fluctuates vigorously in
sign, yielding a mere 17% (10% in Run Ic in Fig. 7
of SM [25]) to the space average. To illuminate the
role of waves, we repeat in the SM [25] the analy-
sis above on two examples of non-colliding Alfvén
waves, a monochromatic wave and a wavepacket,
which are exact solutions of the MHD equations and
which lack energy transfer between scales.

In conclusion, small-scales of the magnetic field
in the decoupled scale range are maintained, on
average, by turbulent Ohmic dissipation (the ME

cascade), 〈Πb〉 = 〈J·εεε〉. Mean magnetic field-line
stretching acts as a large-scale driver of the ME cas-
cade, justifying the inclusion of a low-mode forcing
in the induction eq. (2) when resolving the tran-
sitional conversion range is unimportant, such as
in high-Re asymptotic scaling studies of MHD tur-
bulence [30–32]. Our results will help in deriving
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FIG. 2. For scale ℓ = 2π/30 (k = 30) from Run IIc in Figure 1 at one instant in time: top two panels show a 2D slice from the
3D domain of pointwise conversion at large scales, Bℓ·Sℓ·Bℓ(x) (top left), and small scales, Bℓd

·Sℓd
·Bℓd

(x)−Bℓ·Sℓ·Bℓ(x)
(top right). B0 is in the z-direction. Bottom two panels show probability density function of conversion as a function of x at
large scales (bottom left) and small scales (bottom right). The large-scale distribution has mean of 0.43 and variance of
223.54. The small-scale distribution has mean of 0.09 and variance of 3060.84. Quantities are normalized by energy injection
rate ǫinj. Unnormalized Gaussians (green dashed lines) are added to both plots.

relations equivalent to the Politano-Pouquet rela-
tions [33] but for the separate cascades of KE and
ME, with potential implications on the scaling in
MHD turbulence. This work can also help sub-grid
scale model development and testing in Large Eddy
Simulations of MHD turbulence [34, 35]. For ex-
ample, they provide a direct measure of the turbu-
lent magnetic Prandtl number, which is unity within
decoupled range due to equipartition of the cas-

cades, 〈Πu

ℓ 〉 = 〈Πb

ℓ〉, which has important implica-
tions to astrophysical flows such as accretion disks
[12, 14, 15]. Our findings are also relevant for tur-
bulent magnetic reconnection [22, 36, 37] since they
imply that the net bending and twisting of magnetic
field lines at length scales in the decoupled range is
driven by the effective electric field, −εεεℓ, rather than
by the flow’s strain, giving independent support to
previous studies [22, 38]. Our framework for quanti-
fying field-line stretching at various scales may also
prove insightful in magnetic dynamo studies[39–42].
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