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We present the first experimental observations of scale-free behavior in the bubble footprint distribution 
during the boiling crisis of water, in pool and flow boiling conditions. We formulate a continuum percolation 
model that elucidates how the scale-free behavior emerges from the near-wall stochastic interaction of 
bubbles and provides a criterion to predict the boiling crisis. It also offers useful insights on how to engineer 
surfaces that enhance the critical heat flux limit. 
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Boiling is a very efficient heat transfer process, widely 

applied for heat management, e.g., in electric power 
stations and high-power-density electronic devices. In such 
systems, the boiling process dynamics is driven by the heat 
flux transferred from the heated surface. An increase in the 
heat flux produces a rise of the surface temperature, which 
in turn increases the bubble nucleation site density and 
departure frequency. The chief vulnerability of boiling is 
an instability known as the boiling crisis, triggered when 
the heat flux reaches the critical heat flux (CHF) limit. This 
phenomenon coincides with a sudden transition from a 
nucleate boiling regime, with discrete bubbles on the 
surface, to a film boiling regime, where a stable vapor 
layer blankets the entire heating surface [1]. Such layer 
causes a drastic degradation of the heat removal process, 
resulting in a potentially catastrophic escalation of the 
heater temperature. Thus, understanding the boiling crisis, 
and predicting and possibly enhancing the CHF are 
desirable goals for the safety and economics of many 
thermal systems. 

Experimental investigations have revealed that CHF 
depends on fluid properties and operating conditions, 
heater geometry, surface material, orientation, and 
properties (e.g., roughness, porosity, and intrinsic 
wettability). Many mechanisms and models have been 
proposed to capture these effects [2]. However, there is 
still no agreement within the thermal science community 
on the actual trigger mechanism for the boiling crisis, let 
alone a universal model to predict it. Historically, most 
models have been built assuming that the boiling crisis is 
triggered by a macroscale hydrodynamic instability in the 
countercurrent vapor/liquid flow far from the heating 
surface [3,4]. More recently, several authors have argued 
that the boiling crisis is instead a near-wall phenomenon, 
determined by micro-scale fluid-solid interactions on the 
heating surface [5-9]. However, while most models attempt 
to capture the CHF limits leveraging scale-based 
descriptions of presumed trigger mechanisms, recent 
findings suggest that the boiling crisis is a scale-free, 
critical phenomenon. This perception stems from 

observations of power-law spectra in the temperature 
fluctuations of wire heaters [10], energy distributions of 
acoustic emissions during surface quenching with liquid 
nitrogen [11], and bubble size distributions in slowed-
down boiling of hydrogen at reduced gravity [12]. The 
predictions of a numerical lattice spin model presented in 
Ref. [11] suggest that the critical behavior may be the 
result of a bubble percolation process. The observations in 
Ref. [12] seem to corroborate this hypothesis. However, 
one cannot exclude that these findings are affected by the 
special dynamics of the boiling process in such operating 
conditions (e.g., the bubble departure diameter tends to 
infinity) [12]. To affirm the percolative scale-free nature of 
the boiling crisis, an experimental and theoretical 
demonstration in conditions of broad relevance, such as the 
pool and flow boiling of water, is still unavailable and 
clearly necessary.  

In this letter, we present the first experimental study of 
bubble footprint distributions during the pool and flow 
boiling of water. At CHF, the experimental distributions 
follow a power-law 1 / Aγ with a critical exponent γ  
smaller than 3, which demonstrates the scale-free nature of 
the boiling crisis [13]. Our experiment also enables 
measurement of fundamental boiling parameters (i.e., 
nucleation site density, growth time, bubble departure 
frequency and radius), and is instrumental in revealing the 
dynamics of the bubble interaction process. Inspired by 
these observations, we develop a bubble percolation model 
based on the continuum percolation theory [14]. The model 
explains and captures how the scale-free behavior at the 
boiling crisis emerges from the near-wall stochastic 
interaction of individual bubbles. It also provides a 
criterion to predict the boiling crisis. 

We run boiling experiments featuring specially-
designed heaters (see schematic in Fig. 1) consisting of a 1 
mm thick, infrared (IR) transparent sapphire substrate 
coated on one side with an electrically conductive, IR 
opaque, 0.7 µm thick layer of Indium-doped Tin Oxide 
(ITO). The thin ITO coating, in contact with water, is the 
Joule heating element. It has negligible thermal resistance 
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and heat capacity, i.e., the ITO temperature coincides with 
the actual temperature on the boiling surface. The heater is 
installed in a pool boiling or a flow boiling apparatus, as 
detailed in the Supplemental Material, Sec. 1 [15]. During 
the experiments, we increase the heat flux released by the 
ITO in a sequence of steady steps, up to the critical heat 
flux that causes the boiling crisis. For each heat flux, the 
infrared radiation emitted by the ITO and transmitted 
through sapphire is recorded by a high-speed infrared 
camera (with a temporal resolution of 400 µs and a spatial 
resolution of 115 µm/pixel) and post-processed to obtain 
the time-dependent temperature and heat flux distributions 
on the boiling surface [16]. The high temporal and spatial 
resolution enabled by this technique is key to capturing the 
dynamics of the boiling process up to the boiling crisis. 
Bubbles nucleate, grow, perhaps coalesce, and depart from 
the surface. The life of discrete bubbles is described 
through finite, characteristic parameters, i.e., departure 
frequency, growth time, and departure diameter. Bubbles 
interaction is instead a stochastic process determined by 
these parameters, as well as the distance among the 
nucleation sites, i.e., the nucleation site density. A typical 
output is shown in Fig. 1, where we can clearly distinguish 
the patches of individual and coalesced bubbles attached to 
the surface. 

 
FIG.  1. The schematic on the left shows the ITO-sapphire heater 
configuration with the IR diagnostics (not to scale). The image on 
the right shows a typical instantaneous heat flux distribution on 
the boiling surface (1x1 cm2, flow boiling test at atmospheric 
pressure, bulk temperature 95 °C, mass flux 2000 kg/m2/s and 
heat flux 3460 kW/m2).  

These distributions are processed to measure nucleation 
site density, bubble wait time and growth time and, 
importantly, the footprint area of each bubble on the 
boiling surface, using the techniques described in Ref. 
[17]. The measured bubble footprint area probability 
density functions (PDFs) for saturated pool boiling and 
subcooled flow boiling tests run at atmospheric pressure 
are shown in Fig. 2 (a) and (c) (for the flow boiling tests 
the bulk temperature is 95 °C, i.e., ~5 °C below the 
saturation temperature at the system pressure, the mass 
flux is 2000 kg/m2/s). For low heat fluxes (e.g., at 300 

kW/m2 and 1270 kW/m2 for the pool boiling and flow 
boiling experiments, respectively), most of the bubbles are 
isolated, i.e., they seldom interact with each other. We 
observe that, under these conditions, the footprint area PDF 
is exponentially damped (as also observed in Ref. [12]), 
and can be fitted by 

( ) .cAP A ce−=  (1)  

Assuming that the footprint of individual bubbles is 
circular, the bubble footprint radius PDF is 

2

( ) 2 .c RP R Rce ππ −=  (2)  

Note that from Eq. (2), c is related to the average bubble 
footprint radius ( 1/ 4 )R c< > = . As the heat flux 
increases (e.g., at 800 kW/m2 and 2580 kW/m2 for the pool 
boiling and flow boiling experiments, respectively), 
bubbles merge more and more frequently, and large bubble 
patches start to appear on the boiling surface. When the 
boiling crisis occurs (at 1170 kW/m2 and 4320 kW/m2 for 
the pool boiling and flow boiling experiments, 
respectively), the bubble footprint area PDF is a power law 
function 1 / Aγ . In pool boiling (Fig. 2 (a)), the critical 
exponent γ  evaluated by the maximum likelihood method 
and tested by the Kolmogorov-Smirnoff method [18,19] is 
1.52 ± 0.01. The critical exponent for the flow boiling test 
(Fig. 2 (c)) is instead 1.85 ± 0.01. 

 
FIG. 2 (a) Experimental and (b) simulated bubble footprint area 
PDFs at different heat fluxes, from nucleate boiling (orange, 300 
kW/m2) till the boiling crisis (sky-blue, 1170 kW/m2) for the 
saturated pool boiling tests at atmospheric pressure. The dashed-
dotted line represents Eq. (1) obtained with an average bubble 
radius R< > = 0.6 mm. The dashed line represents a power law 
distribution 1 / Aγ . The power law exponents are γ = 1.52 ± 0.01 
and  γ = 1.43 ± 0.01 for the experimental and the simulated 
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PDFs, respectively. The red curve in (b) corresponds to a 
supercritical case which represents the film boiling regime. (c) 
and (d) are analogous experimental and simulated results for the 
subcooled flow boiling test. Here, the average bubble radius for 
the exponential fitting, i.e., Eq.(1), is R< > = 0.3 mm. The power 
law critical exponents are γ = 1.85 ± 0.01 and  γ = 1.62 ± 0.01 
for the experimental and the simulated PDFs, respectively. 

The emergence of scale-free behavior at CHF indicates 
the absence of a characteristic scale in the boiling crisis, 
also in the pool and flow boiling of water. The different 
values of γ  suggest that the critical exponent depends on 
the operating conditions, which seems reasonable given the 
different boiling phenomenology (e.g., different forces 
affecting bubble departure dynamics) in pool boiling and 
flow boiling. 

Inspired by our experimental observations, we 
introduce a Monte Carlo (MC) model based on the 
continuum percolation theory [14], which captures the 
footprint area PDFs. From our experiments, we know the 
nucleation site density ''N  the bubble growth time gt , and 
the bubble departure frequency f  for each heat flux. 
Given a surface of area A  equal to our heater active area 
(i.e., 1x1 cm2), we randomly generate ''N A  nucleation 
sites. The probability to have a bubble growing out of a 
certain nucleation site is equal to gt f . Thus, given a 
random number [0,1]b ∈ , if gb t f≤ , we generate a 
bubble, otherwise, we move to the next nucleation site. 
Similarly, if a nucleation site is already covered by a 
bubble growing out of another nucleation site, we move to 
the next one. When generating a bubble, its radius is 
determined according to the distribution of individual 
bubbles, Eq. (2), measured experimentally (for the 
derivation details see the Supplemental Material, Sec. 2 
[15]): 

24 ln(1 )RR q
π

< >= − − , (3)  

where [0,1]q ∈  is a random number. The average bubble 
radius R< >  is the last characteristic quantity obtained 
from the experiments. However, the average size of 
individual bubbles can only be accurately measured at low 
heat fluxes, i.e., when bubbles do not interact with each 
other. At high heat fluxes, the individual bubble footprint 
area PDF shrinks compared to the distribution that bubbles 
would have if they were growing without ever interacting. 
To overcome this limitation, the value of R< >  at high 
heat flux is estimated scaling the value of R< >  at low 
heat fluxes by a bubble departure, force balance model [20] 
(for the derivation details and a complete description of the 
experimental data used as input in the MC model, see the 
Supplemental Material, Sec. 2 [15]). We repeat this 
procedure throughout the nucleation sites. A typical output 
image from one cycle is shown in Fig. 3, where we sample 
the areas of the bubble patches, for both individual and 

coalesced bubbles. Then, the process is repeated many 
times, until we obtain a converged bubble footprint area 
PDF. 

The predicted PDFs are shown in Fig. 2 (b) and (d). 
The MC model captures the trends of the experimental 
PDFs correctly, at any heat flux level. The PDF at CHF 
follows a power law, which corroborates the thesis of the 
boiling crisis as a percolative near-wall phenomenon. Note 
that, despite the simplicity of the model, the simulated 
critical exponents are similar to the ones measured 
experimentally. 

 
FIG. 3 Typical output of a MC iteration, with the identification of 
the giant G  and the second giant SG  clusters. Bubble footprints 
of the same color belong to the same cluster. Small crosses 
indicate nucleation sites.  

The scale-free behavior is typical in critical phenomena 
[21], including percolative processes, such as forest fires 
[22] or traffic jams [23]. Percolation is a powerful tool to 
analyze phase transition in stochastic processes, with 
multiple applications in natural and engineering sciences 
[24]. Here, we show how continuum percolation can be 
used to predict the boiling crisis, assuming that we know 
how nucleation site density, bubble growth time and 
departure frequency, and bubble radius change with the 
heat flux, i.e., the boiling driving force. In classic site 
percolation models, a site on a lattice is occupied with 
probability p . Two neighbor nodes are connected if they 
are both occupied. A cluster is defined as a group of sites 
connected by near-neighbor distances [25]. There is a 
percolation threshold cp  below which only a few isolated 
clusters exist, and the size of these clusters increases 
with p . Conversely, for p  above cp , a single, large 
cluster percolates through the lattice. The emergence of a 
spanning cluster indicates the occurrence of percolation 
transition. The percolation threshold cp  coincides with a 
maximum of the second largest cluster size, which 
provides the system failure criterion, and a scale-free 
cluster size distribution [26]. In continuum percolation, 
instead, the discrete lattice sites are replaced by penetrable 
objects (e.g., bubble footprints) in a continuous space (e.g., 
the boiling surface). The percolation threshold is given by 
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a critical filling factor cη , which plays a role similar to cp  
in site percolation [27]. 

In our work, we sample the area of the giant G  and the 
second giant SG  cluster (see Fig. 3), i.e., the bubble 
patches with the largest and second largest footprint area, 
respectively. The trends of the G and SG  area, both 
measured (solid line) and simulated (filled dots), are 
plotted in Fig. 4 as a function of the nucleation site density, 
which monotonically increases with the heat flux. When 
the nucleation site density is small, for low heat fluxes, 
bubbles do not coalesce and the sizes of the G  and SG  
clusters are very close, and are consistent with the size of 
individual bubbles.  

 

 
 

 
FIG. 4 Measured (solid line) and simulated (filled or empty dots) 
trends of the G  and SG area as a function of the nucleation site 
density in pool boiling (a) and flow boiling conditions (b). 
 
Then, as the heat flux increases, the growth of the clusters 
is first determined by the attachment of discrete bubbles. 
However, as the clusters grow bigger (i.e., for higher and 
higher heat fluxes), they start to coalesce with each other, 
and the larger is a cluster, the higher is the probability of 
absorbing smaller ones. Thus, the G  and SG areas 
increase with the nucleation site density up to the ''N  
corresponding to the boiling crisis (i.e., 145 sites/cm2 for 

saturated pool boiling test and 176 sites/cm2 for the flow 
boiling test). Right before the CHF, the G  area is still 
increasing, while the SG  area seems to reach a maximum. 
Note that, as the boiling crisis is detected, experiments are 
promptly interrupted to avoid the burnout of our heating 
element. Thus, the “experiment” is continued numerically 
by adding extra nucleation sites to the simulations. The 
results (hollow dots in Fig. 4) confirm that the boiling 
crisis coincides with a maximum of the SG  cluster area. It 
indicates a critical point, beyond which the process become 
unstable, as the largest cluster G  rapidly absorbs all the 
other clusters, i.e., there is a rapidly growing vapor layer, 
covering the entire boiling surface. The red curves in Fig. 2 
(b) and (d) correspond to the simulated bubble footprint 
area PDFs in supercritical conditions ( ''N = 300 sites/cm2 
for both pool boiling and flow boiling conditions), showing 
the emergence of a large spanning vapor patch. Note that, 
the maximum in the SG  size coincides with the 
occurrence of a power-law distribution, as expected in 
percolation criticality [26]. It provides a criterion to predict 
the boiling crisis and, considering the analogy with the 
dynamics of other percolative processes [26], further 
demonstrates the percolative, critical nature of the boiling 
crisis. 

In conclusion, our investigation of pool and flow 
boiling of water (i.e., conditions of broad interest), reveals 
that the boiling crisis is a percolative, scale-free 
phenomenon. We propose a MC model based on 
continuum percolation that describes the near-wall 
stochastic interaction of bubbles. The model captures how 
the bubble footprint area distribution evolves with the heat 
flux (i.e., the process driving force), through a change of 
nucleation site density, ''N , bubble growth time and 
departure frequency, gt f , and bubble radius, R< > , i.e., 
the model inputs. The model provides a criterion to predict 
the boiling crisis. The growth of a spanning vapor patch, 
i.e., the boiling crisis, coincides with a critical point in the 
percolation process, defined by the “critical triplet” ''N , 

gt f , R< >  that maximizes the SG area. This finding has 
practical implications. The change of nucleation site 
density, bubble growth time, departure frequency, and 
bubble radius with heat flux is determined by surface 
properties and features, e.g., wettability and morphology. 
Thus, the model can be used to assess the performance of 
different surfaces and identify surface engineering 
solutions for which “critical triplets” occur at higher CHF 
values.  
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