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We show that confinement in the quantum Ising model leads to nonthermal eigenstates, in both
continuum and lattice theories, in both one (1D) and two dimensions (2D). In the ordered phase,
the presence of a confining longitudinal field leads to a profound restructuring of the excitation
spectrum, with the low-energy two-particle continuum being replaced by discrete ‘meson’ modes
(linearly confined pairs of domain walls). These modes exist far into the spectrum and are atypical,
in the sense that expectation values in the state with energy E do not agree with the microcanonical
(thermal) ensemble prediction. Single meson states persist above the two meson threshold, due to a
surprising lack of hybridization with the (n ≥ 4)-domain wall continuum, a result that survives into
the thermodynamic limit and that can be understood from analytical calculations. The presence
of such states is revealed in anomalous post-quench dynamics, such as the lack of a light cone, the
suppression of the growth of entanglement entropy, and the absence of thermalization for some initial
states. The nonthermal states are confined to the ordered phase – the disordered (paramagnetic)
phase exhibits typical thermalization patterns in both 1D and 2D in the absence of integrability.

Introduction: Thermalization, and the associated
scrambling of information, is considered to be a generic
feature of isolated quantum systems. Understanding how
to avoid this, and thus preserve quantum information
on long time scales, may prove useful in the develop-
ment of quantum computing technologies. Two well-
studied counter examples to thermalization are known:
integrable quantum systems [1–3] and many-body local-
ization [4–6]. In both cases the existence of many local
conservation laws allows the system to retain an extensive
amount of information and so avoid thermalization [2, 7].
The question of whether integrability is a crucial ingredi-
ent in preventing thermalization and scrambling of infor-
mation has recently attracted much attention with the
realization that kinetic constraints, in the absence of in-
tegrability, can also help avoid it [8–17]. In this Letter,
we will show that thermalization can be avoided in quan-
tum magnets that lack both integrable and kinetic con-
straints. This occurs in both 1D and 2D, which suggests
that nonthermal behavior may be commonplace.

At the heart of understanding thermalization in iso-
lated quantum many-body systems is the eigenstate ther-
malization hypothesis (ETH) [18–20]. This gives a simple
set of criteria under which eigenstate expectation values
(EEVs) of local operators agree with the thermal predic-
tion [18–36]. Of importance for this work, ETH proposes
that the EEV of a local operator in a state with energy
E becomes a smooth function of E as the system size in-
creases, with the spread in EEVs at a fixed E shrinking to
zero [20, 21]. The EEV is then, by construction, thermal
and coincides with the microcanonical prediction [37].

It is known, however, that in finite systems nonther-
mal states that violate ETH can also exist [26, 27, 38–41],
usually being observed at the very edges of the spectrum

(though not always [38]). The presence of such states
can have important consequences for nonequilibrium dy-
namics [20, 40–44], in particular leading to an absence
of thermalization following a quantum quench [39, 41].
Thermalization is used here in the sense that expecta-
tions values in the long-time limit agree with the thermal
result [22, 23]. Such predictions can now be routinely
tested in cold atomic gases, following ground breaking
progress in isolating and controlling these systems [45–
57]. We also expect, with the ability to probe electronic
degrees of freedom on femtosecond time scales [58], to be
able to study questions of thermalization in materials,
unaffected by the electron-phonon coupling.

In this Letter, we show that nonthermal states exist
away from the edges of the spectrum in paradigmatic
models of quantummagnetism, both in 1D and 2D. These
states are present both on the lattice and in the contin-
uum limit, and the fraction of these states compared to
the Hilbert space dimension is consistent with a weak ver-
sion of ETH [29, 39, 44]. In the continuum limit, which
is not usually the subject of ETH studies, we harness
powerful numerical techniques [59] to look at large sys-
tem sizes, and present systematic analytical calculations
that support our results. On the lattice, we use matrix
product state methods [60] to show that the observed
physics is not a remnant of the scaling limit and so may
be possible to probe in experiments on low-dimensional
quantum magnets (see, e.g., [61–64]).
1D lattice and continuum theories: Let us focus on
a particular example of a theory with confinement, the
quantum Ising chain with an additional longitudinal field,

Hlatt =

N∑
j=1

Jσzjσ
z
j+1 + hxσ

x
j + hzσ

z
j . (1)
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FIG. 1. (Upper) EEV spectrum of the spin operator σ(0) as
a function of energy E for the 1D Ising field theory (2) with
m = 1, g = 0.1, R = 35. Arrows show the energies of the first
forty meson states [69]. The MCE result is shown within the
continuum, with error bars denoting the standard deviation
of results averaged over. (Inset) The average magnetization
for the n = 11−15 meson states compared to the MCE at the
same average energy for a number of volumes R. (Lower)
EEV spectrum of

∑
j σ

z
j /N as a function of energy E in the

1D lattice model (1) with J = −1, hx = −0.5, hz = 0.05 for
N = 40 sites, computed with DMRG for open boundary con-
ditions. The nonthermal states are meson-like and confined
to the vicinity of a boundary.

Here σαj (α = x, y, z) are the Pauli matrices acting on the
jth site of the chain, J is the Ising exchange parameter,
and hx (hz) is the transverse (longitudinal) field strength.
Taking the scaling limit in the vicinity of the critical point
(hx = 1, hz = 0), one arrives at the field theory [65, 66]

Hft =

∫ R

0

dx
(
ψ̄∂xψ̄ − ψ∂xψ + imψ̄ψ + gσ

)
. (2)

Here R is the system size, ψ̄ (ψ) are right (left) moving
Majorana fermion fields, m is the fermion mass (m ∼ 1−
hx), g is the continuum longitudinal field, and σ(x) is the
spin operator in the continuum. For generic values of the
parameters, both the lattice (1) and the continuum (2)
models are nonintegrable [67, 68]. Herein we (mostly)
focus on the ordered phase, |hx| < 1 and m > 0.

In the absence of a longitudinal field (hz = 0, g =
0) low-energy excitations are spin flips (costing energy
∼ 2m), which fractionalize into pairs of domain walls
that are free to independently propagate. Thus, at
low-energies, above energy 2m there is a continuum of
two-particle states. The presence of a longitudinal field
hz 6= 0, g 6= 0 profoundly changes this. The energy

cost of a domain of flipped spins now grows linearly in
the size of the domain. This confining potential between
domain walls (much like quarks in quantum chromody-
namics (QCD) [70]) leads to a collapse of the low-energy
continuum into discrete ‘meson’ excitations, formed from
pairs of domain walls [71, 72]. This has been observed in
two quasi-1D quantum magnets, CoNb2O6 [61, 62] and
SrCo2V2O8 [63, 64].

The presence of confinement leads to nonthermal states
appearing within the spectrum, despite the system being
nonintegrable. To show this, we construct eigenstates
of the two models, (1) and (2), and measure the aver-
age magnetization within each state [73]. On the lattice,
we do this via the density matrix renormalization group
(DMRG) [60] by targeting up to 100 low-lying eigen-
states [74]. In the continuum we use truncated spectrum
methods [59] to construct thousands of low-lying eigen-
states [75]. Example results are shown in Fig. 1; we see
that there are two major features in the EEV spectrum.
Firstly, there is a thermal-like continuum of excitations
on the right hand side of the plot (confirmed by com-
parison with the microcanonical ensemble (MCE) in the
continuum). With increasing system size, this continuum
narrows as predicted from ETH, see [41]. Secondly, there
is a line of states that is well separated and above this
continuum (see the arrows in both plots), whose EEVs do
not coincide with the MCE results. These states remain
separated from the thermal continuum up to the largest
system sizes that we can reach; extrapolation to infinite
volume is consistent with the nonthermal states possess-
ing a different magnetization to the MCE, as shown in
the inset. These features are seen in both the continuum
and on the lattice; the similarity between the two panels
in Fig. 1 is striking.

One advantage of tackling this problem in the con-
tinuum is that we have well-controlled analytical ap-
proaches, as well as the numerical data, that allow us
to understand these nonthermal states. For example, in
the upper panel we draw arrows at the energies of the me-
son (linearly-confined domain walls) excitations, as pre-
dicted from a semiclassical analysis [69, 76, 77]. We see
that these coincide exactly with the nonthermal states.
We also have direct access to the wave functions, and see
that these states are well described by the two (domain
wall) fermion sector of the theory [59]. The nonthermal
states are well approximated by the meson form:

|Mn〉 =
∑

ν=NS,R

∑
pν

Ψn(pν)a†pνa
†
−pν |ν〉, (3)

where a†pν creates a fermion of momentum pν in the
ν = NS,R (Neveu-Schwarz (half-integer momenta mod-
ing) and Ramond (integer momenta moding) respec-
tively) sector of the Hilbert space [78], |ν〉 is the vacuum
within a given sector. The wave function, Ψn(p), and the
mass of the meson, Mn, can be determined analytically
via the Bethe-Salpeter equation, see [79] for details.
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FIG. 2. We plot the relative second order correction to the
energy of the first 19 zero momentum mesons (δE2/E) coming
from mixing with 0 and 4 domain wall states in the 1D Ising
field theory (2) with m = 1 and g = 0.1. For comparison we
also plot the energy correction to the zero momentum spin flip
excitation in the disordered phase. Note that the correction
for the mesons is from 10−2 to 10−4 that of spin flip excitation.

Meson stability above thresholds: The persistence
of well-separated single meson excitations above the two-
meson threshold is, at first glance, surprising. Analo-
gously to QCD (see, e.g., [70]), one might expect these
single mesons to be unstable, with open decay channels
to multimeson states. As shown in Fig. 1, this intuition
is incorrect. To shed some light on this, we consider the
(two domain wall) meson excitations, described by (3),
and compute the second order energy correction that
comes from hybridization with four domain wall states
and vacuum [80]. Below we will see that this correction
is exceedingly small compared to the bound state energy,
E = Mn, in contrast to the second order correction com-
ing from the spin flip excitations within the disordered
(paramagnetic) phase, where confinement is absent [81].
We find that the meson corrections are orders of mag-
nitude smaller than those of the paramagnetic spin flip.

We give explicit details of the second order energy
computation in the supplemental (see also [41]), only
schematically sketching the calculation here. The prob-
lem is split into three parts, H = Hmeson +Hfree +Hint.
The first part, Hmeson, describes the single meson part
of the problem, whose eigenstates are given by (3). In
Hfree we describe the non-interacting part of all the other
(n > 2) fermion sectors of the theory. Finally, Hint
contains all interaction vertices, except the two-fermion-
to-two-fermion case, which was taken into account in
Hmeson. We specifically consider vertices involve two-
to-four fermions and two-to-zero fermions. A similar cal-
culation is performed for the second order correction of
the single particle excitations in the disordered phase.

We present results of our computations in Fig. 2, show-
ing the relative second order corrections to the zero mo-
mentum energy for the first nineteen meson states (brown
circles). For comparison we present the corresponding

computation for the zero momentum fermion in the dis-
ordered phase (blue square). We see that the energy
corrections for all of the mesons range from 10−5 to 10−3

of their unperturbed energy. Moreover the energy correc-
tions for those mesons which lie above the four domain
wall continuum, i.e. that are not nominally kinematically
stable, are no larger than those below the threshold. We
also see that the meson energy corrections are at least
two orders of magnitude smaller than the correction of
the fermion (spin flip) for the disordered phase. Thus the
meson excitations, states of the form (3), appear quasi-
stable to mixing with four domain wall states. This sup-
ports the results of the previous section; by slightly dress-
ing the states (3), we form completely stable nonthermal
states in the finite volume. Note that this is counter
to the usual intuition from QCD, where one would ex-
pect the single meson to be unstable to kinematic decay
above the two meson threshold. Even at higher orders
in perturbation theory, the two domain wall sector of
the theory appears to continue to mix only very weakly
with the sectors containing n ≥ 4 domain walls, despite
there being scattering processes induced by the longitu-
dinal magnetic field that remain finite into the thermo-
dynamic limit. While we have not extended our second
order correction to account for mixing with six domain
wall states explicitly, we expect such mixing to be con-
siderably smaller because of phase space considerations
[82].
Extension to 2D: Surprisingly, the above analysis in
1D extends in a straightforward manner to higher di-
mensions. Consider the following 2D Hamiltonian:

H2D =
∑
j

(
Hj + J⊥

∫ R

0

dxσj(x)σj+1(x)

)
, (4)

formed from individual Ising continuum chains

Hj =

∫ R

0

dx
(
ψ̄j∂xψ̄j − ψj∂xψj + imψ̄jψj

)
, (5)

coupled by a local spin-spin interaction of strength J⊥.
For this system the coupling J⊥ between neighboring
ordered (m > 0) chains provides a confining potential.
Meson-like approximate eigenstates of (4), of the form

|En〉 =
∑

νk=NS,R

N∑
j=1

∑
pνj

Ψ{ν}n (pνj )A
†
j(pνj )A

†
j(−pνj )|{ν}〉,

(6)
can be found via an analogous Bethe-Salpeter equa-
tion [83]. Here N is the number of chains, A†j(pν) creates
a fermion in the jth chain with momentum pν in the
ν = NS,R sector, and |{ν}〉 = ⊗Nj=1|νj〉 are the vacuum
states of the system, formed from the individual νj-vacua
in each chain. The physical character of the wave func-
tion Ψ

{ν}
n (pνj ) is similar to the 1D case, Eq. (3).
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With meson states (6) (i.e., approximate two fermion
eigenstates) defined, one can proceed in a similar manner
to the previous section, and compute their self-energies.
This calculation is essentially identical to the previous
case, leading us to conclude that meson excitations in 2D
are extremely long-lived excitations. We can no longer
construct the EEV spectrum in 2D (cf. Fig. 1 in 1D), but
a mean field decoupling of the 2D system into 1D chains
suggests that these meson-like excitations should behave
similarly to those analogous excitations in 1D, i.e. they
are nonthermal states. In the next section we provide
further evidence of this.
Nonequilibrium dynamics in 2D: Having argued that
nonthermal states exist in the 2D theory with confine-
ment, Eq. (4), we now support this with evidence that
the nonequilibrium dynamics is anomalous [84]. This is
one of the signatures of the presence of nonthermal states
in the spectrum. Nonequilibrium dynamics is induced by
a quench of the interaction J⊥ = 0→ J⊥ 6= 0. Both the
initial state and subsequent time-evolution are computed
in the chain array matrix product state (ChainAMPS)
framework [59]. This methodology blends truncated
spectrum methods with MPS algorithms, and has been
used to study the entanglement entropy and spectrum
of the 2D Ising model [85], and to compute the time-
evolution following a quantum quench [86].

In Fig. 3 we present results for the time-dependence of
the connected spin correlation function between chains,
|〈σi+y(x, t)σi(x, t)〉 − 〈σi+y(x, t)〉〈σi(x, t)〉|, and the en-
tanglement entropy SE for quenches from the J⊥ = 0
ground state to J⊥ 6= 0, for both ordered (m > 0) and
disordered (m < 0) chains. Here SE is defined as the
Von Neumann entanglement when the system is parti-
tioned into two semi infinite arrays of chains. For or-
dered chains the correlation function does not show the
usual light cone behavior following the quench, with re-
sponse instead being strongly suppressed and correlations
remaining local. In the presence of confinement this is
consistent with the quasiparticle picture of Calabrese and
Cardy [87, 88]: the quench generates pairs of quasipar-
ticles with opposing momenta (forming mesons), which
propagate away from one another. At fixed energy den-
sity (as set by the quench), the particles can only sep-
arate a finite distance before the confinement potential
saturates the available energy, and hence the light cone
is suppressed. In contrast, the disordered case, where
confinement is absent, displays a clear light cone spread
of correlations. This suppression of the propagation of
quasiparticles also impacts the growth of SE (with en-
tanglement being carried by these quasiparticles), as is
shown in Fig. 3.

Before concluding, we note that similar effects have
been observed in the 1D nonequilibrium dynamics of (1)
and (2). In the lattice problem (1), Kormos et al. [89]
observed both a suppression of the light cone and the
growth of the entanglement entropy following a global

Ordered phase Disordered phase

FIG. 3. (Upper) The time-evolution of the connected cor-
relation function, |〈σi+y(x, t)σi(x, t)〉 − 〈σi+y(x, t)〉〈σi(x, t)〉|,
following quenches in the 2D quantum Ising model (4) for R =
8, J⊥ = 0 to −0.15 and (left) ordered chains m = 1, (right)
disordered chains m = −1. Both cases start from a J⊥ = 0
ground state. Dynamics are computed via ChainAMPS [59].
(Lower) The time-evolution of the entanglement entropy SE

following the same quenches. Note the y-axis of the lower
left panel has been increased by a factor of 100. A detailed
discussion of the simulations is provided in the Supplemental.

quantum quench. Nonequilibrium dynamics following
quenches in the field theory (2) have also shown clear
signatures of the meson excitations [41, 90, 91].
Conclusions: In this Letter, we have seen that non-
thermal states appear in the Ising model, in 1D and 2D,
when confinement is present. The nonthermal states have
EEVs that do not match the MCE prediction, highlight-
ing their nonthermal nature, despite an absence of inte-
grability. We saw this very explicitly in Fig. 1, in both
the continuum and on the lattice, by computing the EEV
spectrum of the longitudinal magnetization.

We identified the nonthermal states as being meson-
like, in that the state is well approximated by linearly
confined pairs of domain walls, as expressed in Eqs. (3)
and (6). The mesons hybridize only very weakly with
the thermal continuum of multimeson states, see Fig. 2.
From controlled numerical and analytical calculation in
1D, we turned our attention to 2D and argued that such
meson states exist there, with essentially the same cal-
culations applying in 1D and 2D. The presence of such
nonthermal states can lead to anomalous nonequilibrium
dynamics, illustrated in Fig. 3, such as suppression of the
lightcone and entanglement growth, as well as an absence
of thermalization [92] (for a recent example of this in a
quantum quench of a 1D lattice model, see Ref. [93]).

While we have focused on Ising models in 1D and 2D, it
is natural to expect that the physics of nonthermal states
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carries over to other theories with confinement. Recently,
holographic theories with confinement have shown an ab-
sence of thermalization [94], a hallmark of the presence
of nonthermal states. A natural test of this conjecture
could be provided by the Schwinger model in an electric
field, which has been the subject of a number of recent
works [95–100] (the disordered Schwinger model has also
recently been shown to display confinement driven non-
ergodic behavior [101, 102]).
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