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The discontinuous jump in the bulk modulus B at the jamming transition is a consequence
of the formation of a critical contact network of spheres that resists compression. We introduce
lattice models with underlying under-coordinated compression-resistant spring lattices to which
next-nearest-neighbor springs can be added. In these models, the jamming transition emerges as a
kind of multicritical point terminating a line of rigidity-percolation transitions. Replacing the under-
coordinated lattices with the critical network at jamming yields a faithful description of jamming
and its relation to rigidity percolation.

Jamming [1, 2] is now well-established as a phe-
nomenon with a zero-temperature mechanical critical
point that separates a state of free particles from one
in which they collectively resist elastic distortions. The
jamming critical point (J) is, however, unusual in that it
exhibits properties of both a first-order transition (with
a discontinuous jump in the bulk modulus, B, and a
second-order one (with a continuous growth of the shear
moduli, G, from zero). This is in stark contrast to its
cousin, the rigidity-percolation (RP) transition [3, 4] in
which both the bulk and shear moduli grow linearly from
zero above the RP critical point (or line). The first-order
jump in B is a consequence of the formation of a crit-
ical network of contacts that resists compression. This
fact is the inspiration for our introduction of lattice mod-
els with sublattices that also resist compression. In our
analysis of these models using effective medium theory
(EMT) [3, 5] and numerical simulations, the jamming
transition corresponds to a kind of multi-critical point at
which a line (or surface) of RP transitions meets a line
along which B is nonzero.

Our models begin with the under-coordinated honey-
comb lattice in two dimensions (2D) or the diamond lat-
tice in 3D, each consisting of sites connected by nearest-
neighbor (NN) springs, with a non-vanishing bulk mod-
ulus but with vanishing shear moduli [6]. Next-nearest-
neighbor (NNN) springs are randomly added (as shown
in Fig. 1(a)) leading to the phase diagrams shown in
Fig. 1(b)-(e). At a critical concentration of NNN springs,
the Maxwell rigidity criterion [7] is reached, the shear
modulus begins to grow continuously from zero, and the
bulk modulus begins to increase. This model mimics im-
portant aspects of jamming and the jamming transition,
which is reached by increasing the volume fraction of
spheres until they have a sufficient number of contacts to
first resist compression, indicating a bulk modulus that
is greater than zero. The marginally jammed state that
is formed is an analog of the honeycomb or diamond lat-
tice in our model. Further compression of the jammed
lattice increases the number of contacts and produces an
increase in the shear moduli from zero. This is the analog
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FIG. 1. (a) 3-sublattice model showing NN (solid) and NNN
(dashed and dotted) bonds, the latter of which connect sites in
either of the triangular sublattices containing the first (black)
or second (open) sites of the honeycomb lattice. (b) 3D phase
diagram showing the surfaces SFRabc (blue), SRbRabc (green),
SRcRabc (khaki), SFRb (dark green), and SFRc (dark khaki)
and the jamming line LJ (red); (c) to (e) 2D slices of the 3D
diagram at (c) constant 2/3 < pa < 1, (d) constant 0 < pa <
2/3, and (e) at both pc = 1/6 at pb = pc, showing the F , Rb,
Rc, and Rabc phases. UU ′ is the jamming line when pa = 1
and an RP line when pa < 1. XX ′, XY , X ′Y ′, JX, and JY
are RP lines, and XZ marks the transition form the Rb to
the Rabc phase. In (e) the region to the right of JX is the
Rabc phase when pa = pb, and the line JX is not a part of
the figure when pc = 1/6. CJD is a jamming path with a
discontinuous jump in B

of adding NNN bonds in our models. Our model differs
from jamming in that sites in the former are fixed on a
periodic lattice whereas those in the latter are off lattice
and change positions with compression. In addition, the
bulk modulus in our models remains nonzero below the
jamming transition as long as the NN bonds are occu-
pied with unit probability. Our approach, however, can
be applied to any lattice that has an under- or critically
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coordinated sublattice with nonzero B, such as that dis-
cussed at the end of this paper and in the SI.

Our model exploits the fact that both the honeycomb
and the diamond lattices with NNN bonds can be di-
vided into three independent bond lattices, each sharing
the sites of the original NN lattice: the original NN lattice
(the a-lattice), and two independent NNN lattices (the b
and c lattices) with sites, respectively, on one or the other
site-sublattices of the a-lattice (see Fig. 1(a)). Popula-
tion of the bonds of these lattices with springs of spring
constant k with probabilities pa, pb, and pc gives rise to
EMT spring constants ka, kb, and kc, respectively. In
what follows, we will focus on the 2D case, though most
of the results we present apply to the diamond lattice as
well.

The full 3D EMT phase diagram, depicted in Fig. 1(b),
in the space defined by (pa, pb, pc) shows four distinct
phases: a floppy phase F , in which B and G are zero
at zero frequency, and three rigid phases with B > 0
and G > 0: Rb, in which only kb > 0; Rc in which
only kc > 0; and Rabc, in which ka, kb, and kc are all
nonzero. It addition, it shows boundary surfaces SAB
where phases A and B meet, lines LABC where phases
A, B, and C meet, and the jamming line LJ (in red)
where SFRabc meets the plane pa = 1. Figures 1(c), (d),
and (e) depict various 2D slices. In (c) the line U ′U is
LJ when pa = 1. In (e), J is the point on LJ when
pc = 1/6. Surfaces SFR for R equal to Rb, Rc, or Rabc,
and lines XY , XX ′, Y ′X ′, JX, and JY correspond to
RP transitions; and surfaces SRRabc, with R = Rb or Rc,
and line XZ represent transitions in which ka develops
a non-zero value when kb or kc is already non-zero. In
(e), J , viewed from the F phase, is a critical endpoint [8]
where the second-order RP line JY meets the first-order
line at pa = 1. In what follows, we will focus on the
vicinity of the points J and X in the 2D slices.

As shown in previous studies (see e.g. [3, 9, 10]), the
EMT provides accurate but not exact estimates of elastic
moduli and phase boundaries. In particular, it does not
incorporate redundant bonds [10] that lead to over- and
under-constrained regions in randomly-diluted samples.
Our results agree with this previous work (see Fig. 2):
simulations and EMT track each other closely, but with
larger deviations near rigidity transitions and particu-
larly near point X where simulations do not show discon-
tinuous slope changes predicted by the EMT (See SI).

In Fig. 1(e), ka, and thus B, is nonzero along the line
pa = 1, but kb and kc are (for both pb = pc and pc = 1/6)
zero along this line for pb less than or equal to its value
pJb at J . Thus, G but not B approaches zero as J is
approached along not only the line pa = 1, but along any
line approaching J from from the rigid side. On the other
hand if J is approached from the floppy side along any
path (e.g., CJD in Fig. 1(e)) other than pa = 1, B will
undergo a discontinuous change at LJ as in jamming.
We argue that a path with pa < 1 until J is reached
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FIG. 2. Left: Simulations (points) and EMT solutions (sur-
faces) for B (yellow) and G (blue) as a function of pa and pb
for pc = 0. Red and green lines correspond to JX and XY
on Fig 1e, respectively. Right: B and G (inset) as a function
of pb from EMT (lines) and simulations (circles) for pc = 0
and pa = 1 (filled circles) and pa = 0.7 (open circles).

followed by a path along pa = 1 for pb > pJb faithfully
represents the jamming transition. If springs are removed
randomly from a jammed lattice at J , it immediately
loses its rigidity. This also takes place in our model if we
allow removal of springs from the a-lattice as well as the b
and c lattices, i.e., follow a path in F in which pa < 1 until
LJ is reached. The jamming line at pa = 1 terminates
an RP surface (SFRabc) across which all effective spring
constants, and thus both B and G, grow linearly with
distance from it.

EMTs also yield information about finite frequency be-
havior [5, 11–17] with the inclusion of inertia of mass
points and/or viscous friction with a background fluid
[18]. In our case, the former yields densities of states
that scale like those near jamming, and the latter lead
to renormalized shear and bulk viscosities in the floppy
regime, the former of which diverge as |∆p̃|−1 at the
SRP ’s and along LJ , and the latter of which also di-
verge as |∆p̃|−1 at the SRP ’s but as |∆p̃|−2 along paths
terminating at LJ .

Our EMT replaces randomly placed springs with
spring constant k = 1 in the three lattices with homoge-
neously placed ones with respective effective spring con-
stants ka, kb, and kc such that the average scattering from
any given spring in the effective background medium is
zero. The EMT equations are then

kα(ω) = [pα − hα(ω)]/[1− hα(ω)], α = a, b, c, (1)

hα(ω) =
1

z̃αNc

∑
q

Tr kα(ω)Kα(q)G(q, ω), (2)

where G(q, ω) = [
∑
β kβ(ω)Kβ(q)−w(ω)I]−1 the lattice

Green’s function, Nc the number of unit cells, z̃α (= 3
for all α in the honeycomb lattice) the number of bonds
per unit cell in lattice α (= a, b, c), Kα(q) is the α-lattice
normalized stiffness matrix, and w(ω) = ω2 + iγω, where
ω is the frequency, γ is the drag coefficient, and the mass
is set to one. As discussed in the SI, evaluation of hα
in the limit kb, kc, and w tend to zero requires some
care because Ka has a zero eigenvalue at every q. The
kα(ω) are determined by the self-consistent solution to
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Eqs. (1) and (2). In the zero-frequency limit (w(ω)→ 0),
kα ≡ kα(ω = 0) = 0 when pα = hα(ω = 0) ≡ hα, kα = 1
when pα = 1, and 0 ≤ kα ≤ 1 for hα ≤ pα ≤ 1. As we
shall see, kα vanishes as w(ω)→ 0 when pα < hα

It follows from Eq. (2) that the hα’s satisfy the sum
rule∑

α

z̃αhα(ω) = mD[1 + (w(ω)/Nc)
∑
q

TrG(q, ω)], (3)

where D is the spatial dimension and m = 2 is the num-
ber of sites per unit cell in the honeycomb and diamond
lattices. Equation (3) along with the results of Eq. (1)
that hα = pα when kα = 0 yield the Maxwell condition
for marginal stability on the SFRabc surface or on the
jamming line at ω = 0:

z̃apa + z̃b(pb + pc) = mD. (4)

The surfaces SFRb and SFRc signal the onset of rigidity
of the b and c lattices individually, in which case, ka and
kb (kc) adopt the vanishing solutions to Eq. (2). In this
case, the rigid b (c) lattice is triangular and has only one
site per unit cell, and hb = D/z̃b = 2/3 throughout the
Rb phase, and similarly for hc. At SRbRabc, ka and kc
first adopt non-zero solutions to Eqs. (2) and (1), and
ha = pa and hc = pc to yield z̃apa + z̃bpc = (m− 1)D on
SRbRabc.

We will now focus on critical points and lines in
Figs. 1(d) and 1(e). As noted above, J marks the jam-
ming point and X the critical point where F , Rabc, and
Rb meet. At fixed pc, J = (1, pJb , pc), where pJb =
(1/3)−pc, and X = (2/3−pc, 2/3, pc) (for 0 < pc < 2/3).
At pb = pc, J = (1, 1/6, 1/6) and X = (1/2, 2/3, 1/6).
Figure 1(e) shows phase-diagram slices for pc = 1/6 and
for pb = pc. The lines JX and JY satisfy the equation

∆p̃ ≡ ∆pJb − ν∆pJa = 0, (5)

where ∆pJb = pb−pJb , ∆pJa = (1−pa) > 0, and the inverse
slope, is ν = νX = 1 for the line JX at fixed pc = 1/6
and ν = νY = 1/2 for the line JY and pc = pb.

Along the F -Rabc lines JX or JY , all effective spring
constants (on bonds with non-zero occupation proba-
bility), and thus all elastic moduli, grow linearly with
∆p̃, and along the F -Rb line, kb grows linearly with
∆pb = pb − 2/3:

kJVr = cJVr [∆p̃], kXYb = cXYb [∆pb], (6)

where [φ] = (φ+ |φ|)/2, r = a, b and V = X,Y , and cJVr
varies with position along JV . Along the line pa = 1, ka
is exactly equal to one. Near J , kb maintains its form
of Eq. (6), but ka has to vanish on JV and equal one at
pa = 1. This is accomplished within the EMT by

kJb =
[∆p̃]

s+ νcJ
; kJa =

cJk
J
B

cJkJB + ∆pa
→ cJ∆p̃

cJ∆pb + s∆pa
,

(7)

where s = 1 − pJb . When ∆pa = 0, kJa = 1 as required.
Also kJa clearly vanishes along JV where ∆p̃ = 0. The
elastic moduli of the honeycomb lattice in terms of the
k’s are G = rbkb + rckc and B = saka + sbkb + sckc,
where rb = rc = 9/8, sa = 3/4, sb = sc = 9/4, and as
advertised, G vanishes linearly with ∆p̃. The value of
ka and thus of B depends on the path to the jamming
point as can be seen by putting ∆pb = ν′∆pa in Eq. (7)
with ν′ > ν: kJa = cJ(ν′ − ν)/(cJν

′ + s). The ratio G/B
approaches zero and the Poisson ratio σ approaches its
limit value of one along all paths to J . G/B reaches a
value along the RP line JY increasing from zero at J
to a maximum of 1/2 at Y . These results are similar to
those in Ref. [19, 20].

We now turn to behavior in the vicinity of X. The
EMT solution at w = 0 is

kXb = [∆p̃Xab]/sb and kXa = kXb [∆pXa ]/cX , (8)

where ∆p̃Xab = ∆pXb + νX [∆pXa ], ∆pXb = pb− pXb , ∆pXa =
pa − pXa , cX ≈ 0.1 (evaluated numerically), and sb = 1−
pXb . These equations encode all of the phase boundaries
incident at X: ∆p̃Xab is equal to ∆pXb when ∆pXa < 0
and to ∆p̃X = ∆pXb + νX∆pXa when ∆pXa > 0 so that
kXb = 0 for ∆pXa < 0 and ∆pXb < 0 and for ∆p̃X < 0
and ∆pXa > 0. The result is that kXb > 0 in the Rb
and Rabc phases in Fig. 1 and that kXa is nonzero only
in the Rabc phases of that figure. We have calculated
the bulk and shear moduli by numerical solution of the
EMT equations for the kα’s and by their direct evaluation
on our random lattices. The two solutions are nearly
identical over most of phase space as seen in Fig. 2. The
simulations, however, do not show the sharp changes near
X that the EMT does.

Equation (2) provides dynamical as well as static infor-
mation, allowing us to calculate the frequency-dependent
effective spring constants in the floppy region. Of partic-
ular interest is the approach to the jamming point. In the
case of pb = pc, the results (in agreement with Ref. [18]
for kb) are

kb =
1

2(s+ νc)

[
∆p̃+

√
|∆p̃|2 − 4(s+ νcJ)vbw(ω)

]
,

(9)

≈ [∆p̃]

s+ νcJ
− vbw

|∆p̃|
, when

vbw

|∆p̃|2
� 1, (10)

and

ka =
kb

kb + (∆pa/cJ)
(11)

∆p̃<0−−−−→ vbw

vbw + (∆pa|∆p̃|/c)
≈ cJvbw

∆pa|∆p̃|
, (12)

Thus on paths approaching J in the low-frequency limit
when w = iγω, kb diverges as |iγω∆p̃|−1, but ka diverges
as iγω|∆pa∆p̃|−1, implying that the shear viscosity di-
verges as |∆p̃|−1, but the bulk modulus viscosity diverges
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as |∆p̃|−2 . The scaling of kb [Fig. 3(a)] is consistent with
results for the shear modulus of soft sphere packings near
jamming [21]. When γ = 0 and w = ω2, our calculations
yield a density of states that is nearly constant at small ω
[Fig. 3(b)], down to a crossover frequency ω∗ that scales
as ∆p̃ (see inset), as in jamming [22] [23].
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FIG. 3. (a) kb/|∆p̃| as a function of γω/|∆p̃|2 in the low-
frequency limit w = iγω. Blue (red) circles: numerical so-
lutions to full EMT equations for approach to jamming in
the rigid (floppy) phase; black dashed line: Asymptotic so-
lutions [Eq. (9)] near jamming critical point; Hollow circles:
Rekb/|∆p̃|; Filled circles: −Imkb/|∆p̃|, which is independent
of the sign of |∆p̃|. Inset: ka as a function of γω/(∆pa|∆p̃|).
(b) Density of States ρ(ω) for pa = 1 and ∆p̃ = ∆pb = 10−2

(solid lines), 10−3 (dashed), 10−4 (dot-dashed) and 10−5 (dot-
ted); Inset: Linear behavior of crossover frequency ω∗(∆pb).

As noted earlier, in our model, ka, and thus B, is
nonzero in the floppy region when pa = 1. In the jam-
ming protocol, B is zero in the floppy phase and jumps
discontinuously at J with the formation of a random
marginally stable lattice with a single state of self stress
[24, 25] that resists increase in pressure of volume frac-
tion. As volume fraction is increased, more links form,
inviting us to model jamming starting with the lattice at
J , which is now critically rather than under coordinated
with z̃a = D (z̃a is half the coordination number), as
the analog of the a lattice and identifying “unoccupied
bonds” between pairs of close but not touching spheres
as the b lattice. Ideally this b lattice would contain a
sufficient number of bonds that it would by itself be me-
chanically stable if all of these bonds were occupied with
springs. We can now use the random-lattice EMT of
Refs. [11, 12, 17], modified to treat lattices a and b sepa-

rately. The result is a phase diagram [See SI] in the pa-pb
space identical to that of Fig. 1(e) but with the point J
moved to the upper left hand corner: J = (1, 0) and the
point Y moved to Y = (0, D/z̃b). The path to jamming,
which involves first the creation of lattice a, is thus along
the line pb = 0 until J is reached. As more springs are
added, the path follows the line pa = 1. Of course, dif-
ferent paths can be followed, most of which will intersect
the RP line J-Y [3, 20]. For example, all paths starting
from a point in the jammed phase along pa = 1 in which
springs are randomly removed from both a and b sublat-
tices cross the RP line. The EMT equations are identical
in form to Eqs. (2) and (1), but with only two sublattices
and Eq. (4) replaced by z̃apa + z̃bpb = D, where z̃a = D.
Near J , ka and kb obey Eqs. (6), (7), and (12) to (9) with
pJb = 0 and s = 1. See the Supplementary Information
for more detail.

Our model features a second-order RP line meeting a
first-order B > 0 line. Possible procedures for produc-
ing similar features in jammed systems include targeted
selective pruning [20, 26] or dividing bonds into those
present in the marginal network at jamming and those
added later followed by removal of the former and latter
with respective probabilities pa ad pb.

In this article, we introduced and analyzed, using effec-
tive medium theory and numerical simulations, a lattice
model for jamming that captures the essential features of
the jamming transition, which emerges as a critical end-
point in which a second-order rigidity percolation line
meets a line in which there is a discontinuous jump in
the bulk modulus from a non-rigid phase.
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