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We report on spontaneous rotational symmetry breaking in a minimal model of complex macromolecules
with branches and cycles. The transition takes place as the strength of the self-repulsion is increased. At
the transition point, the density distribution transforms from isotropic to anisotropic. We analyze this transition
using a variational mean-field theory that combines the Gibbs-Bogolyubov-Feynman inequality with the concept
of the Laplacian matrix. The density distribution of the broken symmetry state is shown to be determined by
the eigenvalues and eigenvectors of this Laplacian matrix. Physically, this reflects the increasing role of the
underlying topological structure in determining the density of the macromolecule when repulsive interactions
generate internal tension Eventually, the variational free energy landscape develops a complex structure with
multiple competing minima.

It is well known that when attractive interactions between
the units (“monomers”) of a flexible macromolecule become
sufficiently strong, the molecule can undergo a folding transi-
tion from a disordered isotropic state to an ordered structure
with a specific shape [1]. Less familiar is the fact that when
repulsive interactions dominate, macromolecules with more
complex topologies also can transform from an isotropic state
to one with a distinct shape. Examples are dendrimers [2]
and certain biopolymers [3–6]. The shape is determined in
this case by the competition between two effects. On the
one hand, the combination of thermal fluctuations and short-
range repulsive interactions between the monomers favors
isotropic swelling, since that maximizes the entropy of the
molecule. On the other hand, the connectivity of the macro-
molecule constrains the swelling. The swelling generates in-
ternal tension along the bonds, which reduces the dominance
of thermal fluctuations and entropy. Swollen polymer gels [7]
and polymer brushes in good solvent [8] are familiar exam-
ples of polymeric systems where swelling-induced tension
suppresses fluctuations and confers a distinct shape. This
suppression of thermal fluctuations means that tense macro-
molecules of this type can be described by mean-field the-
ory [8], as opposed to linear polymers that have no internal
tension [7].

Suppose one gradually increases the strength of the repul-
sions in a macromolecule with a complex topology, is there a
well-defined threshold where such a molecule develops a dis-
tinct shape? If there is such a threshold then what is the nature
of the rotational symmetry-breaking transition and how is the
resulting shape related to the underlying topology? Finally,
if the number of topological constraints is increased, does a
complex macromolecule eventually become over-constrained
and “frustrated” with a free energy landscape that has multiple
competing minima [9]?

In this paper we propose a theory for the development of
shape of topologically complex macromolecules with repul-
sive interactions. The theory starts from a minimal model that
was introduced by Edwards to describe linear polymers and
polymer gels [10, 11] in good solvent (i.e., solutions where
repulsive interactions dominate). We construct a generaliza-
tion of Flory mean-field theory and apply this to the Edwards

Hamiltonian. We find that the density distribution of com-
plex branched polymers indeed undergoes a transition where
it loses rotational symmetry. The structure of the broken sym-
metry state is determined by the eigenvalues and eigenvectors
of the Laplacian matrix of the molecule, a concept borrowed
from graph theory. As the strength of the repulsive interac-
tions further increases, a complex energy landscape emerges
with multiple competing minima. We find that at least the
coarse-grained features of the density distribution of complex
macromolecules and the tension profile can be predicted on
the basis of the eigenvalues and eigenvectors of the Laplacian
matrix.

The Edwards Hamiltonian for a macromolecule is defined
by

βH =
d

2a2

∑
m<n

′
(rm − rn)2︸ ︷︷ ︸
βH0

+
∑
m<n

u(rm − rn) (1)

The summations are here over N point-like monomers lo-
cated at sites rm with m = 1, 2, . . . N that are linked into a
connected network by identical Gaussian springs. The prime
in summation for H0 indicates that this double sum is to
be restricted to monomers pairs that are linked by springs.
The second term in Eq. (1) represents short-range repulsive
monomer-monomer interactions with strength v =

∫
u(r)ddr

and range σ in units of a.
Our approach is based on the Gibbs-Bogolyubov-Feynman

(GBF) variational principle [12, Section 1], which states that

F ≤ FT + 〈(H −HT )〉T (2)

Here, 〈. . .〉T indicates that a Boltzmann average is to be taken
with respect to the trial HamiltonianHT . FT is the free energy
associated with HT . The variational free energy FV = FT +
〈(H −HT )〉T provides an upper bound for the free energy.

Our construction of trial Hamiltonian HT is motivated by
presenting the ideal molecule (i.e., v = 0) Hamiltonian H0

in terms of the eigenvectors and eigenvalues of the N × N
real, square, symmetric Laplacian matrix Ln,m. The Lapla-
cian matrix is the Laplace operator in matrix form defined on a
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graph of the nodes and bonds of the molecule [12, Section 2].
Diagonal entries Ln,n are equal to the number of monomers
linked to monomer n (“vertex degree”) while off-diagonal en-
tries Ln,m are equal to−1 when monomer n andm are linked
and 0 if they are not. The rows and columns of Ln,m add to
zero so the N component vector with all entries equal is an
eigenvector with zero eigenvalue. The non-zero eigenvalues
λj , with j = 1, 2, ...N − 1, are strictly positive for connected
graphs. The lowest non-zero eigenvalue, henceforth denoted
by λ, is known as the “spectral gap” [13]The eigenvalues and
eigenvectors of the Laplacian matrix reflect only the topology
of the graph of the molecule and do not relate to the geomet-
rical space in which the molecule is embedded.

The usefulness of the Laplacian matrix lies in the fact
that the expression for H0 can be diagonalized as βH0 =
d
2

∑N−1
j=1 λj

∣∣A(j)
∣∣2 where the λj are the (rank-ordered)

eigenvalues of the Laplacian matrix and where the A(j) =
N−1∑
i=1

riξ
(j)
i /a are normal mode amplitudes. These are vectors

in the d-dimensional embedding space expressed in terms of
the orthonormalN -component eigenvectors ξ(j)n of the Lapla-
cian matrix [14]. The expectation value of the mean square
radius of gyration of the molecule without pair interactions
(v = 0) can be directly expressed in terms of the eigenvalues
of the Laplacian as R2

0 = a2

N

∑N−1
j=1

1
λj

[14]; we emphasize
that there are only N − 1 terms in this sum, the j = 0 term
(with λ0 = 0) is automatically excluded. The spectrum of
eigenvalues of the Laplacian also determines the spectrum of
relaxation rates of the ideal (v = 0) molecule for the case
of Rouse dynamics [15]. For the present purpose, an impor-
tant aspect of H0 is that it has d zero modes (associated with
translation symmetry). However, the correct number of zero
modes of a physical molecule – including translation and rota-
tion symmetry – is d(d+1)/2 > d so the modes ofH0 can not
be simply identified with the physical modes of a molecule.

As a first example, let HT equal H0 except that the low-
est non-zero eigenvalue, the spectral gap λ, is replaced by a
variational parameter γ:

βHT =
d

2
γ
∣∣∣A(1)

∣∣∣2 +
d

2

N−1∑
i=2

λi|A(i)|2 (3)

It can be shown (see [12, Section 3]) that this leads to the
variational free energy which in the interesting case γ � λ
has the form:

βFV (γ) ' d

2

λ

γ
+ C(N)

v

ad

(
d

2π
γ

)d/2
(4)

where C(N) =
∑N
m<n=1

(
1

(ξm−ξn)2+γσ2

)d/2
with ξm the

eigenvector associated with the spectral gap λ ≡ λ1, and σ the
range of the excluded volume interaction in units of a. It also
can be shown, by generalizing methods of [16–21] (see [12,
Section 4]), that for structures without symmetry this expres-
sion can be rewritten as a variational expression for the radius

of gyration R:

βFV (R) ' 3

2
λN

(
R

a

)2

+B
N2

(4/3)πR3
(5)

withB proportional to v. This expression represents an exten-
sion of the Flory variational free energy for linear polymers
[7] to polymers with complex structures. The first term on
the right hand side represents entropic elasticity resisting the
swelling while the second term represents osmotic swelling
due to monomer-monomer repulsion in second viral form.
This form of the Flory free energy for complex structures can
be further simplified if there exists a big gap between first and
second eigenvalues, in that case R2

0 ' a2/Nλ, and λ in the
entropic elasticity term can be replaced in favor of a more
physical R2

0. The resulting expression has been extensively
compared to experimental and simulation data on branched
polymers [22] with good results. However, for very dense
structures, such as high generation dendrimers, this version of
Flory theory is not satisfactory, and more rigorous form (5)
has to be used; for these cases, there is also a different ap-
proach suggested in [23].

Next, include in HT the possibility of non-zero expectation
values A

(i)
0 for the M mode amplitudes with the lowest M

eigenvalues (see [12, Section 3]):

βHT =
d

2

M∑
i=1

γi

(∣∣∣A(i) −A
(i)
0

∣∣∣)2 +
d

2

N∑
i=M+1

λi

∣∣∣A(i)
∣∣∣2
(6)

The general case γi = λi and M = N is interesting. The set
of order-parameters Ai

0 then defines a set of N particle vec-
tors r0m/a =

∑N−1
i=1 Ai

0ξ
(i)
m (up to an overall translation).

Expressing the trial Hamiltonian in real space with this varia-
tional ansatz leads to:

βHT =
d

2a2

∑
m<n

′
(rm − rn −∆r0m,n)2 (7)

where ∆r0m,n = (r0m − r0n). This is the Hamiltonian of
the ideal molecule except that Gaussian bonds rm − rn link-
ing monomers m and n have been placed under internal ten-
sion. The expectation value of the bond separations ∆r0m,n
have a certain direction in space so rotational symmetry is bro-
ken. Formally, Eq. (7) is identical to the Gaussian Network
Model that has been used with good results to obtain the nor-
mal modes of folded proteins [24]. Formula (7) is also instruc-
tive in terms of the aforementioned issue of zero mode count-
ing. In the presence of non-vanishing bond-stretching vectors
∆r0m,n, the bonds in macromolecule do form a solid object
whose overall d(d+1)/2 rotations and translations are all zero
modes. This is to be compared with an artificial system under
purely harmonic Hamiltonian H0 where all monomers in the
ground state are assembled in one point which, as a point, does
not have any rotational modes.

Finally, allow both the eigenvalues and the bond expecta-
tion values to be variational parameters . The simplest case is
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again M = 1 (see [12, Section 3]):

βFV (γ,A0) ' d

2
ln γ +

d

2
λ

(
|A0|2 +

1

γ

)
+ C(N)

v

ad

(
d

2π
γ

)d/2
e−γdA

2
0/2

(8)

The function FV (γ,A0) always has a stable minimum at
|A0| = 0 and small γ, corresponding to Flory theory. How-
ever, FV (γ,A0) also has a second minimum for large γ and
a non-zero value of |A0|. As a function of increasing v/ad,
the absolute minimum shifts discontinuously from the Flory
minimum to the new minimum. The density distribution of
the new minimum has an elongated shape, as can be shown
from concrete realizations (see [12, Section 2]). If the spectral
gap eigenvalue is non-degenerate then the symmetry-breaking
transition has the character of a simple saddle-node bifurca-
tion. Since the thermal fluctuations of the M = 1 mode
are strongly suppressed for large γ , we will refer to the ap-
pearance of a non-zero expectation value of a mode as the
“condensation” of that mode. If the eigenvalue is degenerate,
which happens if the structure has symmetry, then other bi-
furcation types become possible. The transition also can be
productively compared to the first-order isotropic-to-nematic
phase transition.

The numerical simulations of the symmetry-breaking tran-
sition shows that the density distribution becomes more com-
plex with increasing strength of the excluded volume parame-
ter v. It is necessary to allow multiple modes to freeze out to
describe this case. The variational free energy FV ({γi,A(i)

0 })
for M coupled vectorial order parameters is a natural exten-
sion of Eq. (8) (see [12, Section 3]). However, minimiza-
tion of FV ({γi,A(i)

0 }) requires numerical methods. Numer-
ical minimization of FV ({γi,A(i)

0 }) for the concrete case of
a second-generation dendrimer in d = 2 shows that for in-
creasing v/ad, there is a series of transitions where modes
with larger and larger eigenvalues freeze out. Importantly, the
interacting system has the correct number of zero modes in
d = 2 [25].The numerical minimization of FV ({γi,A(i)

0 })
for a 36-node branched graph with a maximum of M = 18
mode expectation values is shown in Fig. 1. For v/a2 less
than about 0.75, the isotropic Flory minimum was the low-
est free energy state, as illustrated by the case v/a2 = 0.24.
For v/a2 = 1.20 the density profile is anisotropic. The elon-
gation expected from the M = 1 analysis is clearly visible
but there are also three diffuse maxima, which indicates that
more than one mode has condensed. The power spectrum of
mode amplitudes in this state is dominated by the lowest few
eigenvalues. For v/a2 = 2.05, all of the M = 18 modes
have condensed with a complex power spectrum of eigenvec-
tor amplitudes. The numerical minimization of the variational
free energy was, for larger values of v/a2, complicated by
the fact that the variational free energy had numerous minima
with comparable energies. The v/a2 = 2.05 density profile
should be viewed only as representative.

For comparison, we also performed a d = 2 Monte-Carlo
(MC) simulations on the same system (Fig. 2). One of the

FIG. 1. Two-dimensional density profiles obtained using the GBF
variational method for a 36 node branched polymer with a maximum
of M = 18 non-zero mode expectation values. Top left: Graph of
the molecule. Top right: v/a2 = 0.24 in units of kBT . The density
profile is isotropic. Bottom right: v/a2 = 1.20. A few low-lying
modes have condensed. Bottom left: v/a2 = 2.05. Most modes
have condensed. White space bar: 5a

.

FIG. 2. Density profiles obtained by Monte-Carlo simulation for the
same molecule and interaction strengths as Fig.1. White space bar:
5a.

.
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nodes was pinned to suppress rigid-body Brownian motion of
the center of mass. The Kabsch algorithm [26] was used to
compensate for rigid-body rotational Brownian motion. The
top left image in Fig. 2, with v/a2 = 0.24, has a radius of
gyration comparable to the theoretical prediction and a weak
but noticeable rotational asymmetry. For v/a2 = 1.20, the
predicted and computed densities have comparable sizes and
both have three maxima. The onset of rotational asymme-
try thus appears to be less sharp than predicted by the theory
while for v/a2 = 2.05 the theoretical density profile is sig-
nificantly more detailed than the computed profile. The MC
simulations were, in this last case, complicated by long relax-
ation times.

As an alternative route for a quantitative test of the the-
ory, we compared the moduli |∆r0i,j | of the bond extensions
predicted by the GBF variational principle with those ob-
tained from the MC simulation. We found that the variational
method correctly produces the bond extensions of the outer
monomers but it somewhat over-estimates the bond exten-
sions of the inner monomers (see [12, Section 5]). The devel-
opment of significant internal tension provides an a-posteriori
justification of the use of a self-consistent mean-field theory.
We interpret the contrast between the good agreement of the
bond tensions as compared with the density profiles as indi-
cating that there are multiple competing free energy minima
with have similar patterns of bond tension. Finally, we found
that the stretching of the bonds in the center of the molecule
approaches 50 percent for v/a2 = 2.05. It may well be that
in practice this amount of stretching exceeds the limit of the
harmonic Gaussian interaction of the Edwards model. In fact,
limited stretchability of bonds may well help rotational sym-
metry breaking (see also [27]).

A natural area where our theory could be applied is that
of biopolymers with non-trivial topology that are dominated
by repulsive interactions. An increasing number of func-
tional but disordered proteins has been identified. The inter-
actions between the different parts of these proteins are pre-
dominantly repulsive (“good solvent”) yet they have distinct,
reproducible shapes [3, 4], as confirmed by Molecular Dy-
namics simulations [5]. Though proteins have a linear poly-
mer primary structure, they still can adopt a non-trivial topol-
ogy due to bonding between specific residues (e.g., cysteine
residues forming disulfide bridges). Another possible area of

application involves the shape of large, single-stranded RNA
molecules. A graph of the secondary structure of an RNA
molecule has a branched topology without circuits, The ter-
tiary structure of an RNA molecule is generated by pairing be-
tween non-adjacent nucleic acids that were not paired as part
of the secondary structure and these tertiary contacts could
be included as bonds in the graph of the molecule, which
would produce cycles. Cryo-EM studies of large, swollen
single-stranded RNA molecules in good solvents reveal that
they are disordered but their density profile has a distinct
anisotropy [6].

We note that there is a related problem where the method
discussed in this paper could be applied namely the computa-
tion of the most likely structure of a biopolymer for which it
already has been experimentally determined that certain el-
ements of the primary structure are adjacent to each other,
for example in the form of a contact map obtained by NMR
[28] or by HiC [29]. Though the distance constraints are
here knowledge-based, instead of physical bonds or links, the
Laplacian matrix method still could be used to encode the
NMR contact map after which likely density profiles could
be computed using the method we outlined here.

We close by briefly mentioning several directions in which
our method could be possibly generalized. These include
various symmetric structures (such as dendrimers) for which
Laplacian has degenerate spectrum (and, accordingly, related
eigenvectors ξi), other peculiar structures (such as small world
networks), and also densely branched structures for which
connections between branched points are shorter than persis-
tence length and thus Edwards Hamiltonian (1) needs to be
generalized. Although our specific results may not be applied
for these cases, we expect that the variational approach should
still be valid.
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