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Fluids in which both time-reversal and parity are broken can display a dissipationless viscosity that
is odd under each of these symmetries. Here, we show how this odd viscosity has a dramatic effect
on topological sound waves in fluids, including the number and spatial profile of topological edge
modes. Odd viscosity provides a short-distance cutoff that allows us to define a bulk topological
invariant on a compact momentum space. As the sign of odd viscosity changes, a topological phase
transition occurs without closing the bulk gap. Instead, at the transition point, the topological
invariant becomes ill-defined because momentum space cannot be compactified. This mechanism is
unique to continuum models and can describe fluids ranging from electronic to chiral active systems.

In ordinary fluids, acoustic waves with sufficiently large
wavelength have arbitrarily low frequency due to Galilean
invariance [1]. When either a global rotation or an exter-
nal magnetic field is present, Galilean invariance is ex-
plicitly broken by either Coriolis or Lorentz forces within
the fluid, respectively. Hence, the spectrum of acoustic
waves becomes gapped in the bulk. Yet, a peculiar phe-
nomenon can occur at edges or interfaces: chiral edge
modes propagate robustly irrespective of interface geom-
etry. This phenomenon analogous to edge states in the
quantum Hall effect [2–4] was unveiled in the context of
equatorial waves [5] and explored in out-of-equilibrium
and active fluids [6, 7]. Similar phenomena occur in lat-
tices of circulators [8, 9], polar active fluids under con-
finement [10] and coupled mechanical oscillators [11–13],
including gyroscopes [14, 15] and oscillators subject to
Coriolis forces [16, 17].

In addition to Coriolis or Lorentz body forces, flu-
ids in which time-reversal and parity are broken generi-
cally exhibit a dissipationless viscosity that is odd under
each of these symmetries [18, 19]. The viscosity tensor
ηijkl relates the strain rate vkl ≡ ∂kvl to the viscous
part of the stress tensor σij = ηijklvkl. Odd viscosity
refers to the antisymmetric part of the viscosity tensor
ηoijkl = −ηoklij [18, 19]. In an isotropic two-dimensional
fluid, odd viscosity is specified by a single pseudoscalar
ηo, see Supplementary Information (SI) for details [19].
Odd viscosity changes sign under either time-reversal or
parity, and hence must vanish when at least one of these
symmetries is present. Conversely, odd viscosity is gener-
ically non-vanishing as soon as both time-reversal and
parity are broken [20–22]. For instance, microscopic Cori-
olis or Lorentz forces are sufficient to induce a non-zero
odd viscosity [23, 24], in addition to the corresponding
body forces. Odd viscosity has been studied theoretically
in various systems (see SI for a partial review) including
polyatomic gases [25], magnetized plasmas [24, 26], flu-

ids of vortices [27–30], chiral active fluids [31], quantum
Hall states and chiral superfluids/superconductors [32–
42]. Its presence has been experimentally reported in
polyatomic gases [43–45] (where both positive and nega-
tive odd viscosities were observed under the same mag-
netic field, for different molecules), electron fluids subject
to a magnetic field [46], and spinning colloids [47].

Here, we show that the presence of odd viscosity funda-
mentally affects the topological properties of linear waves
in the fluid. In particular, the net number of chiral edge
states depends on the signs of both odd viscosity and the
external magnetic field (or rotation) on each side of an
interface. We define a bulk topological invariant that ac-
counts for this striking behavior. In a fluid, momentum
space is not compact (linear momentum can be arbitrar-
ily large). Hence, the definition of bulk topological in-
variants requires a constraint at short wavelengths [48–
50]. We show that a non-vanishing odd viscosity pro-
vides such a short-distance cutoff, associated with mi-
croscopic angular momenta (see Fig. 1). Upon changing
the sign of odd viscosity, a topological phase transition
occurs without gap closing because at the transition, the
small-wavelength constraint changes, so the topological
invariant becomes ill-defined. When odd viscosity goes to
zero, half of the edge states are no longer hydrodynamic
because their penetration depths vanish while the other
half retain a finite penetration depth set by the gap size.
Model.— Consider the odd Navier-Stokes equations de-

scribing a compressible time-reversal and parity violating
fluid:

∂tρ(r, t) = −ρ0∇ · v(r, t) (1)

∂tv = −c2∇ρ/ρ0 + ωBv
∗ + νo∇2v∗ (2)

where r ≡ (x, y) is the position, ρ is the fluid density
whose average is ρ0 [51], v ≡ (vx, vy) is the velocity
and v∗ ≡ (vy,−vx) is the velocity rotated by 90°. The
chiral body force ωBv

∗ can arise, e.g., from (i) Lorentz
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FIG. 1. Physical realizations of the minimal model for
topological fluids with odd viscosity. (a) Two-dimensional
plasma under magnetic field B, with cyclotron frequency
ωB = qB/M . (b) Chiral active fluid with intrinsic rotation
angular frequency ωA, subject to a global rotation with an-
gular frequency ωB = −2Ω.

forces for which ωB = qB/M where Bẑ is the magnetic
field, q is particle charge, and M is particle mass or (ii)
Coriolis forces for which ωB = −2Ω where Ωẑ is the ro-
tation field. Besides the body force ωBv

∗, the Lorentz
or Coriolis forces experienced by the fluid particles also
give rise to an odd viscosity term νo∇2v∗, see SI and
Ref. [23, 24] for kinetic theory derivations and the de-
pendence of odd viscosity on fluid parameters, including
temperature. Other microscopic mechanisms violating
both time-reversal and parity also contribute to the odd
viscosity. This is for instance the case of active torques
(see SI and Ref. [31]).

Equations (1-2) are our starting point. Equivalent
equations, but with zero odd viscosity and with ρ re-
placed by the height of a surface wave, are studied in the
context of geophysics [52–57]. The topological properties
of such waves were identified for fluids on a sphere [5],
see also Ref. [6]. In the next section, we show that a non-
zero odd viscosity allows the topological characterization
of density waves for fluids within a plane by acting as a
short distance cut-off, see also Ref. [58]. By contrast, an
ordinary viscosity term ν∇2v by itself does not lead to a
regularization of the continuum theory; this term can be
neglected in the limit νo/ν � 1 (see SI for a discussion).

Bulk dispersion and topology.— In the fluid bulk,
Eqs. (1-2) can be replaced by their momentum-space ver-
sion ∂t[ρ,v] = iL(q)[ρ,v] where the operator L(q) ≡
qxΛx+qyΛy +(ωB−νoq2)Λz is expressed in terms of the
3×3 matrices Λi (i = x, y, z, see SI for definitions). Here,
ρ(q, t),v(q, t) are the Fourier transforms of ρ(r, t),v(r, t),
and the wavevector q ≡ (qx, qy) takes values in the en-
tire plane. The dispersion relations ωs(q) for the fre-
quency of bulk modes are the eigenvalues of L(q) and
consist of three branches. One branch has a flat disper-
sion ω0(q) = 0 with an eigenmode combining vorticity
and density (see SI). The acoustic spectrum is described
by the other two branches, with dispersion relations

ω±(q)/ωB = ±
√

(1−mq̄2)2 + q̄2, (3)

where q̄ = |q|c/ωB . The qualitative features of these
dispersion relations near q̄ = 0 depend on the frequency
ωB and the dimensionless velocity ratio m ≡ ωBν

o/c2,
which is analogous to the square of a Mach number (see
SI). As ωB (and not νo) controls the magnitude of the
gap at q̄ = 0, odd viscosity alone cannot open a gap
in the spectrum of acoustic waves. However, m plays
an important role in the shape of the dispersion relation.
For m < 1/2, the band structure looks similar to the case
m = 0, see Fig. 2a–c. For m > 1/2, the band structure
resembles a Mexican-hat potential. While the separation
between the bands is unchanged at q̄ = 0, the gap is now
located along a circle with radius q̄ = const 6= 0, and
the gap size decreases scaling as ωBm

−1/2 at large m. In
this regime, the group velocity ∂ω+/∂q of sound waves
in the fluid is negative for 0 < q̄ <

√
(2m− 1)/(2m2),

a feature shared with left-handed metamaterials, which
have a negative index of refraction.

The analogy between acoustic waves on top of a con-
stant background vorticity and the quantum-mechanical
wavefunction of electrons in a constant magnetic field
suggests that Eqs. (1-2) can lead to topological phenom-
ena akin to the quantum Hall effect. The geometric
phases in the wave propagation are captured by the Berry
curvature F±(q) = ∇q×[(u±q )† ·∇qu

±
q ] of the eigenmodes

u±q associated with the± bands at q in Eq. (3), that reads

F±(q̄) = ∓ 1 +mq̄2[
q̄2 + (1−mq̄2)2

]3/2 . (4)

In the usual case, the integral of Berry curvature over
momentum space is equal to a topological invariant.
However, standard topological materials have a lattice
structure, for which the wavevector q lives in a compact
Brillouin zone, equivalent to a torus. In contrast, fluid
models such as the one described by Eqs. (1-2) do not in-
clude a short-distance cutoff, and the wavevector spans
the entire two-dimensional (qx, qy) plane. As a conse-
quence, the definition of topological invariants for fluid
models requires the introduction of a constraint at small
length scales [48–50, 59–65], resulting in a nonzero m in
Eq. (4). Formally, this addition can be seen as an ul-
traviolet regularization of the continuum model. Here, a
mesoscopic length scale naturally arises from odd viscos-
ity whose presence leads to a well-defined limit for L(q)
as |q| → ∞, independent of the direction of q. As a
result, integer-valued topological invariants can be asso-
ciated to each band of the wave spectrum as the first
Chern numbers of a modified version of the operator L
defined over the compactified momentum space, i.e. a
sphere (see SI and Refs. [48–50, 59–65] in which a differ-
ent short-distance cutoff is considered in other physical
contexts).

When both ωB and νo are nonzero (and only in this
case), the first Chern number C− of the band with dis-
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persion ω− is given by

C− = sign(νo) + sign(ωB), (5)

whereas the other acoustic band has the opposite first
Chern number C+ = −C−, and the flat band ω = 0 has a
vanishing first Chern number. When odd viscosity van-
ishes, L(q) does not have a unique limit as |q| → ∞.
Hence, the compactification is no longer possible, and
the Chern numbers become ill-defined. Remarkably, this
results in a topological phase transition without gap clos-
ing [49, 60, 61]. This phase transition is due to an ul-
traviolet divergence of the hydrodynamic field theory. In
other words, the hydrodynamic description of the system
breaks down as the small lengthscales associated with
odd viscosity vanish.

The distribution of Berry curvature is also qualita-
tively modified by odd viscosity (see Fig. 2). When
0 < m < 3/8, the Berry curvature concentrates at q̄ = 0.
At higher values m > 3/8, the Berry curvature concen-
trates on a ring with finite radius, scaling as q̄ ∼ m−1/2

for large m. For negative m, a peak at q̄ = 0 coexists with
an extremum along a ring, with opposite contribution.

Bulk-boundary correspondence.— Topological invari-
ants characterize infinite systems without boundaries,
but their values are usually related to observable phe-
nomena at interfaces. According to bulk-boundary cor-
respondence, the net number of chiral edge states (with
frequencies in the bulk band gap) expected at an inter-

face between two systems L and R with invariants CL/R− ,
respectively, is N = CL− − CR−. Note that the general
validity of bulk-boundary correspondence has not been
established in continuum fluid models. We assume that
the case of a container wall can be considered by set-
ting CR− = 0 for the region where waves cannot propa-
gate [4, 66]. Provided that both ωB and νo are nonzero,
Eq. (5) applied to the region where waves propagate
implies that a chiral fluid has a total of two protected
edge modes traveling in the same direction at an edge
if ωBν

o > 0 (corresponding to |CL−| = 2), or a net total
of zero chiral edge modes if ωBν

o < 0 (corresponding to
CL− = 0). Notably, a topological phase transition occurs
between these two regimes without closing the bulk band
gap. Here, the second case corresponds to two counter-
propagating edge states which are not topologically pro-
tected (see SI and Supplementary Movie). We demon-
strate these phenomena within finite-element simulations
of Eqs. (1–2) in a modified disk geometry using COMSOL
Multiphysics (see Fig. 3, SI, and Supplementary Movies).
The density wave at the edge is excited at a frequency in
the gap (c.f., Fig. 2). For a range of model parameters
with ωBν

o > 0, the edge waves propagate unidirection-
ally around the edge of the disk and do not scatter off
sharp corners and prominent defects. Similarly, an inter-
face between fluids with opposite ωB with ωBν

o > 0 on
both sides should exhibit four co-propagating edge states.

FIG. 2. Effect of large odd viscosity on the topological
band structure. (a) Frequency ω̄± ≡ ω±(q)/ωB and Berry
curvature F± for m = 0.1. (c) Schematic representation of
band structure for system with edge. Gray regions of bulk
states are connected by lines of edge states. (d–f) Same as
(a–c), but for m = 4.

This is in sharp contrast to the case of strictly vanish-
ing odd viscosity [5–7], where only two edge modes are
present at an interface.

Although the existence of chiral edge states relies only
on the nonzero topological invariant associated with the
bulk bands, their penetration depth is determined by the
various parameters in Eqs. (1-2). The penetration depth
depends on the separation between the two topological
bands, which can scale with odd viscosity. To estimate
this penetration depth κ−1, we consider a simplified ge-
ometry with a straight fluid interface perpendicular to
the y-axis with a fluid described by Eqs. (1-2) filling the
region y < 0, whereas the region y > 0 is empty. Along
this edge, solutions for density waves in the fluid have
the form ei(ωt−q·r)+κy (for y < 0), which decays to zero
as y → −∞ for real ω, qx, qy and positive κ. We assume
that the dispersion of the edge states goes through the
point ω(qx = 0) = 0 (see SI for the general case). From
Eq. (3) where κ̄ ≡ κc/ωB , we find[[

1−m(q̄y + iκ̄)2
]2

+ (q̄y + iκ̄)2
]1/2

= 0. (6)
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FIG. 3. Simulations showing topological edge states. (See
Supplementary Movie) (a) Edge state with m = 0.0625. Color
shows density deviations, |ρ − ρ0|/ρ0. The edge state is ex-
cited using small-frequency source (star, left). (b, top) Radial
profile of the chiral edge state in (a) comparing simulations
and analytics. (b, bottom) Same plot on log-linear scale. (c)
Snapshot as in (a), but with m = 9.0. (d) Radial profile from
(c) exhibits oscillations.

For small odd viscosity with 0 < m < 1/4, we find so-
lutions with q̄y = 0 and κ± = (c ±

√
c2 − 4νoωB)/2νo.

This solution includes the case κ− → ωB/c in the limit
νo → 0 [5]. In this limit, κ+ ∼ c/νo →∞ which implies
this mode has vanishing penetration depth and therefore
is no longer hydrodynamic. By contrast, no solution sat-
isfying qy = 0 exists at large odd viscosity when m > 1/4.
Instead, the edge wave has a profile whose amplitude
both decays and oscillates away from the edge. When
m � 1 this solution has the form qy = ±

√
ωB/νo and

κ = c/(2|νo|) ∼ m−1ωB/c � ωB/c. In Fig. 3, we com-
pare these results with numerical simulations in which
no-tangential-stress, no-penetration boundary conditions
have been chosen (see SI for details, where we also ob-
serve that no-slip boundary conditions do not lead to
qualitative changes). We find good agreement between
our theoretical predictions and numerical simulations for
both the penetration depth (for νo both small, Fig. 3b,
and large, Fig. 3d) and the oscillation wavelength (for
large νo, Fig. 3d).
Discussion.— When can odd viscosity be neglected?

Comparing the magnitudes of terms on the right hand

side of Eq. (2), we find two length scales `1 ≡ νo/c and
`2 ≡

√
νo/ωB from the ratio of the compressibility and

Lorentz or Coriolis terms to odd viscosity (see SI). At
scales significantly larger than `1,2, odd viscosity is a
small effect. When νo → 0, `1,2 both vanish and the ef-
fects of odd viscosity are no longer captured by the hydro-
dynamic description. In this case, the lack of a cutoff at
short wavelength in the band structure allows for a topo-
logical phase transition without a corresponding closing
of the band gap. In a topological system with boundaries,
the penetration depth of one of the edge states scales as
`1 in the limit νo → 0, whereas the penetration depth
of the other edge state converges to a finite value. In
this limit, the effects of odd viscosity are confined in a
boundary layer with small thickness of order `1, in which
the hydrodynamic description does not apply. In partic-
ular, we find that in the limit of vanishing odd viscosity,
a single edge state with finite penetration depth remains,
with a chirality controlled by the sign of ωB . The other
edge state with vanishingly small penetration depth is
either co-propagating or counter-propagating, depending
on the relative sign of ωB and νo, but likely becomes un-
observable in the limit of zero odd viscosity, in agreement
with the results of Refs. [5–7].

When the lengthscales associated with odd viscosity
are sufficiently large, both edge states should be observ-
able, and different signs of odd viscosity relative to ωB
lead to physically distinct situations. Positive and nega-
tive ωBν

o are possible even when the body force and odd
viscosity both arise from the same origin. For instance,
polyatomic gases under magnetic field can have an odd
viscosity of either sign in the same magnetic field, de-
pending on the constituent molecules [43–45]. Besides,
active systems may allow one to control both quanti-
ties independently due to an additional internal source
of time-reversal and parity violation. For example, chi-
ral active fluids consist of microscopic components of
size a subject to internal torques and dissipation [67–
89], resulting in a steady-state rotation of each micro-
scopic component with frequency ωA and an odd viscos-
ity νo ∝ ωAa

2 [31], where ωA and ωB can have opposite
signs.
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