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Abstract 

Understanding singularities in ordered structures, such as dislocations in lattice modulation and 

solitons in charge ordering, offers great opportunities to disentangle the interactions between the 

electronic degrees of freedom and the lattice. Specifically, a modulated structure has traditionally 

been expressed in the form of discrete Fourier series with constant phase and amplitude for each 

component. Here, we report atomic scale observation and analysis of a new modulation wave in 

hole-doped LuFe2O4+δ that requires significant modifications to the conventional modeling of 

ordered structures. This new modulation with an unusual quasiperiodic singularity can be 

accurately described only by introducing a well-defined secondary modulation-vector in both the 

phase and amplitude parameter spaces. Correlated with density-functional-theory calculations our 

results reveal that those singularities originate from the discontinuity of lattice displacement 

induced by interstitial oxygen in the system. The approach of our work is applicable to a wide range 

of ordered systems, advancing our understanding of the nature of singularity and modulation. 
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displacement, singularity, lutetium ferrite. 

 

Main text 

Symmetry-breaking in quantum states is one of the central topics in modern condensed matter 

physics and is widely considered to be the driving force of the emergent properties such as 

high-temperature superconductivity (HTSC), colossal magnetoresistance (CMR) and topological 

behavior [1-6]. Often the symmetry-breaking in quantum states results in electronic and lattice 

modulation, for example, charge and/or spin density wave [7,8], charge order (CO) [9] and periodic 

lattice displacement (PLD) [10]. It is well-known that the characterization of those modulations 

plays a key role in the extensive research endeavor of exploring quantum states and establishing a 

structure-property relationship in correlated materials [10-12]. Due to the intimate coupling among 

charge, spin, orbital and lattice, modulations in quantum states can be very complicated, 

challenging the existing methodology for both probing and comprehending their nature [1,4]. In 

particular, modulations in crystals arise from not only periodicity but also discreteness in the 

arrangements of constituent electrons and ions. Lacking accurate description of the modulation 

would lead to an incomplete understanding, preventing us from delving the underlying physics. 

Mathematically, collective phenomena of many quantum states or a structural modulation can 

be depicted by a complex order parameter, which is usually expressed as a wave function that can 

be expanded in the form of a discrete Fourier series [13-15]. In general, the phase and amplitude for 

each Fourier component are all constants regardless whether the wave periodicity is commensurate 

or incommensurate [13-16]. The simplest case of a wave with single wave-vector q is illustrated in 

Fig. 1(a) for a one-dimensional modulation. Increasing dimensions in the wave-vector space 

(multiple-q) only adds independent Fourier components, leaving the phase and amplitude of each 

q-vector constant [13]. Nevertheless, in reality, a long-range modulation can be easily disrupted by 

singularities in the material, which could come from defects in crystal lattice, like edge dislocation 

and antiphase boundary (APB) [17,18], and/or discontinuities in electronic structures, e.g., extra 
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charge localization at individual ions [12,19-21]. Consequently, the constant phase and amplitude in 

the modulation wave can be broken, which induces variations, such as topological phase defects and 

solitons [12,20-23]. A singularity in the phase of modulations, i.e., a phase shift, is presented in Fig. 

1(b). Those singularities may vary the correlation length (e.g., forming domains depending on the 

dimensionality) and can substantially modify physical properties [24]. The distribution of phase 

singularities can be random or periodic in real-space as a result of competing energies in the system. 

In the case of periodically-distributed phase singularities, a new wave-vector q can be given for 

singularities in addition to the wave-vector q of the modulation. These two q-vectors are in 

principle independent, however, to date, only one experimental observation was reported for a case 

with two q-vectors along the same direction and the modulation amplitude remains unchanged [20]. 

All the above works suggest that modulations may exist with additional degrees of freedom in both 

phase and amplitude parameter spaces in a variety of materials. Understanding these modulations 

would advance our knowledge on the structural origin of properties and the modified phase and 

amplitude may assist the interpretation of the entanglement in quantum materials. 

In this Letter, we present a study of an emergent modulation in a hole-doped CO system 

LuFe2O4+δ (δ is around 0.15) using advanced scanning transmission electron microscopy (STEM). 

The finding is schematically illustrated in Fig. 1(c), i.e., the phase and amplitude are characterized 

to be associated with a well-defined secondary wave, being a function of second-order modulation 

vector (qs) and position vector (r). Indeed, this can be considered as a universal expression of an 

order parameter, which might be applicable to diverse ordered systems. Insights from this work may 

also shed light on deciphering how the doped holes entangle with charge and lattice that determines 

many emergent quantum states in materials. 
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FIG. 1. Sketches of different types of modulation. (a) Traditional modulation (single wave-vector q). 

Both phase (φ0) and amplitude (A0) are constants. (b) A singularity in the modulation phase, i.e., a 

phase shift (Δφ), generates phase variations with position vector (r). (c) Second order modulation. 

Phase and amplitude are modulated by a secondary wave, being a function of second-order 

modulation wave-vector (qs) and position vector (r). 

 

LuFe2O4 is a model system with room-temperature CO. It has triangular bilayers of FeO5 

bipyramids sandwiched between Lu-O layers along c-direction (Fig. 2(a)) and space group 3R m  

[25-27]. An equal amount of Fe2+ and Fe3+ ions on the triangular lattice forms the charge frustration 

due to energy degeneracy [28], depending on the excess of electron or hole on the third triangular 

corner (Fig. 2(a), lower panel). This arrangement makes its ground states highly susceptible to 

charge fluctuations, composition and temperature, leading to structural flexibility and chemical 

sensitivity [29-31]. Many interesting diffraction patterns have been observed and a series of 

intermediate states can be obtained upon doping [29-32], which therefore make it a very suitable 

platform for achieving and exploring emergent modulations. 
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Figure 2(b) shows an electron diffraction pattern (EDP) along [100] zone axis of the 

hole-doped LuFe2O4+δ. Apart from fundamental spots, a constellation of satellite reflections that are 

absent in the stoichiometric sample (δ=0, Fig. S1) is observed, suggesting a modulated structure. 

Detailed inspections of EDP (Fig. 2(c)) reveal that sharp satellite reflections align well along 

g1=[027]* direction (we hereafter refer as primary modulation (PM) spots, indexed as (hkl,m1,0)), 

which can be characterized by an incommensurate modulation wave-vector qp (~0.135g1). 

Importantly, it is noticed that each PM spot is accompanied by a second order modulation (SOM) 

spot (indexed as (hkl,m1,m2) with m1=m2=±1) running along g2=[017]* direction, marked as qs 

(~0.110g2) in Fig. 2(c). This scenario manifests a marked difference from the traditional 

two-dimensional modulation [13,15,16], where two sets of first-order modulation spots appear both 

around fundamental spots. 

To unravel this emergent modulation, quantitative analysis of the atomically-resolved 

high-angle annular dark-field (HAADF)-STEM image (Fig. 2(e)) was conducted using peak-pair 

algorithm (Supplemental Part 1) [33,34]. Periodic lattice displacement (PLD) maps of Lu along 

vertical [001] (Fig. 2(f)), and horizontal [120] directions (Fig. S2) were acquired. The most 

prominent feature is that the stripes of positive and negative displacement alternatively distribute 

along [027]* direction, yielding a periodicity of around 10 Å, consistent with PM spots 

(λ=1/|qp|≈10.2 Å). Displacement vectors in Fig. 2(g) follow a serpentine curve along qp direction, 

which generates a sinusoidal PM wave as demonstrated in the displacement line profile (Fig. 2(h)). 

It is noteworthy that in PLD maps (Fig. 2(f), Fig. S2) positive and negative displacement stripes are 

not well-aligned but periodically glide along (017)  plane, indicated by the white dash lines. Its 

periodicity is about 20 Å, being consistent with SOM spots (λs=1/|qs|≈20.89 Å). As revealed by the 

line trace (Fig. 2(h)), this glide is caused by the singularity in PM wave phase, i.e. a phase shift, 

Δφ=2πd/λ≈0.17×2π. Periodic singularities generate a modulated phase along qs direction, yielding a 

SOM. The same observation is reproduced by rotating the scanning direction 90 degrees during the 
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image acquisition (Fig. S3), thus ruling out the possible artifacts. Further inspections of PLD maps 

and line profiles reveal that the amplitude of PM also varies with position vector (r) and forms an 

oscillation, indicated by envelopes of lines in Fig. 2(h). The amplitude minima occur at the 

positions where phase singularity takes place. This situation is consistent with the previous 

theoretical prediction that the modulation amplitude collapses at phase deformations to prevent 

divergence of energy density [40,41]. 

 

FIG. 2. Second order incommensurate modulation. (a) The left side of upper panel demonstrates the 

three-dimensional rhombohedral structure of LuFe2O4, and its projection along the a-axis is shown 

on the right side. Lower panel illustrates charge frustration. (b) [100] zone axis EDP with a series of 

satellite reflections. (c) Close-up of region marked in (b). Two vectors, qp (~0.135g1) and qs 

(~0.110g2), are assigned for PM and SOM spots, respectively. (d) Simulated EDP considering both 

PM and SOM (Eqn. (2)). The fourth (m1) and fifth (m2) index correspond to qp and qs, respectively. 

(e) HAADF-STEM image along the a-axis. Spacings of the parallelogram correspond to real-space 

distances of qp and qs. d1 and d2 are (027) and (017)  planar distance, respectively. (f) PLD map 
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along the [001] direction. Periodic phase shift occurs at (017)  planes, indicated by the broken 

white lines. (g) Displacement vector map of Lu extracted from delimiters-framed area in (f). A 

blow-up of the marked section is shown. Arrows follow displacement directions. Arrow length and 

color-coded background represent the amplitude. (h) Displacement line profile along qp marked in 

(f), showing the phase shift (Δφ=2πd/λ) and amplitude oscillation, outlined by envelopes of lines. 

All scale bars are 2 nm. 

 

In general, PLDs can be depicted by a complex order parameter, which can be mathematically 

expanded in the form of discrete Fourier series with constant phase and amplitude for each 

component [13-16]. Traditionally, for a double-q case (q1, q2), the displacement (u) of atom-μ can 

be represented by, 

1 2 2( , ) sin 2π( ) sin 2π( )1 1 2u r A q r A q rμ μ μ μ μ μ μ⎡ ⎤ ⎡ ⎤μ = ⋅ + φ + ⋅ + φ⎣ ⎦ ⎣ ⎦ .              (1) 

μ
br T rμ = +  is the position vector with the lattice vector (T) and the position of atom-μ in the basic 

structure ( μ
br ). A1, A2 and φ1, φ2 are amplitudes and phases for q1 and q2, respectively, which are 

independent and constants. In our case, although there also exist two q-vectors (qp, qs), an attempt 

to describe the modulation using above formula leads to a failure (Supplemental Part 2 and Fig. S4). 

According to experimental observations, a new type of modulation wave is defined. 

 { }p( , ) ( , )sin 2 ( , )p s p su r A q r q r q rμ μ μ μ μ μ⎡ ⎤μ = π ⋅ + φ⎣ ⎦ ,               (2) 

with μ μ
s( , ) + sin[2π( )]μ μ μ μ= ⋅ + φp s s s sA q r B A q r  and p( ) = 0.17 ( )μ μ μφ × ⋅s sq r q rInteger,  . sBμ , μ

sA  

and s
μφ  are constants. Compared with Eqn. (1) that has Fourier terms for q1 and q2 separately, there 

exists only Fourier term for PM (qp). More importantly, phase and amplitude of PM are modulated 

by a SOM wave instead of being constants and become a function of SOM wave-vector (qs) and 

position vector (r). In this way, PM (qp) and SOM (qs) are intertwined, and their essential nature 

differs from the traditional two-dimensional modulation [13]. Based on Eqn. (2), systematical 
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simulations using Bloch-wave method can well reproduce experimental observations in both 

reciprocal- and real- space (Fig. 2(d), Fig. S4(d)). 

Apart from this harmonious SOM, randomly-distributed nascent topological defects, like phase 

dislocations, were also observed (Fig. S5). Such phase defects have been previously reported in, for 

example, charge-ordered manganites [12,21,24], which could come from impurities, elastic strain 

and/or discontinuities in electronic structures [41,42]. Serving as pinning centers, they can break the 

long-range ordering of SOM, which accounts for the diffuse nature of SOM spots in our 

experiments. 

As the PLDs are essentially generated by the modulation of charge density via charge-lattice 

coupling, this SOM has its origin in the abnormal charge distributions caused by doped holes. The 

hole doping nature was confirmed in Fig. S6 [43]. Charge modulation was further attested using 

atomically-resolved electron energy-loss spectroscopy (EELS). It is well-known that features of L2,3 

edges, including shape [47], position [48,49] and L3/L2 ratio [35,50], serve as fingerprints for the 

transition-metals’ valency. Spectroscopic data of Fe-L2,3 edges and HAADF-STEM image were 

simultaneously acquired pixel-by-pixel (Fig. 3(a), inset). The spectrum image clearly shows atomic 

Fe-sublattice, manifesting the high spatial resolution achieved to investigate individual Fe-columns. 

Fig. 3(a) demonstrates three post-processed Fe-L2,3 edges from sites A-C. Since the higher energy of 

edge-onset and L3/L2 ratio for Fe correspond to higher oxidation states (below Fe3+) [35,49,50], the 

valence increases monotonically from Site-C to Site-A. We then extracted all L3/L2 ratios, 

color-coded and overlaid on Fe-sublattice (Fig. 3(b)). Clear charge oscillations are visualized, which 

can be well fitted by a series of (027) and (017)  planes with a periodic phase shift (Δφ). The 

integration of L3/L2 ratios at each (027) plane along qp-direction (Fig. 3(c)), further confirms such a 

phase shift, yielding Δφ≈0.20×2π. This is consistent with structural modulation wave (Fig. 2(h)) and 

diffraction calculations (Fig. S4(d)). We note that measurements of L3/L2 ratios have rather large 

error bars, which may come from the well-documented effects, such as inelastic delocalization and 
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probe broadening [51-53]. Deviation from the model may be related to the small imperfection of the 

area and/or the random error in measurement. These observations manifest the quasiperiodic 

singularity in the phase of charge modulation, which accounts for the discontinuities of PLDs and 

can also be well described by the SOM defined in Eqn. (2). 

 

FIG. 3. EELS characterizations showing charge discontinuity. (a) EELS spectra at Site A-C 

extracted from the atomically-resolved spectrum image of Fe-L2,3 edges in the inset. (b) 

Color-coded Fe-L3/L2 ratios extracted from each atomic column in spectrum image. Mesh spacings 

correspond to real-space distances of qp and qs. (c) Integration of L3/L2 ratios at each (027) plane at 

the arrow position in (b). Experimental data can be fitted by two sinusoidal waves with a phase shift 

(Δφ). Scale bars are 1 nm. 

 

Previous studies on HTSCs suggested that local structural features and changes in carrier 

density for superconductivity depend on interstitial oxygens (Oi) [10]. Therefore, to unravel the 

origin of this charge-lattice SOM, the most stable Oi position in LuFe2O4+δ unit-cell was determined 
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by DFT calculations (Supplemental Part 3) [54]. Due to the c-axial layered structure, considering 

possible interstitial sites in one stacking block is sufficient (Fig. S7). Typical interstitial sites are 

labeled with A-E in a-b plane (Fig. 4(a), left panel) and each with different z-positions, indicated by 

vertical lines (right panel). For each site, ground state energies are calculated as a function of 

z-position and the potential-energy surface is obtained (Fig. 4(b)). To minimize the influence of 

Oi-Oi coupling, we take the lowest energy as reference and compare the relative total energy. It is 

found that Site-A is energetically favorable for all z-positions due to the largest void volume. 

Among all the A sites (different z-positions), one particular site denoted as Site-A0 (z/c=0.7816) has 

the shortest Fe-Oi bond length and the lowest energy. Importantly, this site resides right at the 

junction of two edge-sharing planes of FeO5 cages (Fig. 4(b), inset), which is the intersection of 

(027) and (017)  planes.  

 

FIG. 4. DFT calculations on the origin of SOM. (a) Five isolated interstitial sites considered in 

calculations, indexed from A to E in a-b plane (left panel). Each site consists of a series of 

z-positions, indicated by vertical lines (right panel). (b) The relative total energies (eV/Oi) as a 

function of the fractional coordinate. Polyhedron exhibits the lowest-energy site (Site-A0) with 
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z/c=0.7816. (c) A schematic illustrating the charge-lattice SOM. Oi resides at the lowest-energy site 

based on calculations. Lutetium is omitted for clarity. The discontinuity of displacement 

magnitude-damping curves (blue and yellow) induces the phase glide (Δφ). 

 

Combing the calculations with experiments, a possible mechanism for SOM is proposed (Fig. 

4(c)). Based on PLD and charge mapping results, a mesh consisting of a series of (027) and (017)  

planes was drawn to translate (027) planes passing through the lowest-energy Oi. Since ionic 

displacements are essentially caused by Oi, their magnitude reaches a maximum at Oi-site and 

damps down with the increase in distance. Consequently, it yields periodic displacement damping 

curves (yellow for Phase 1, blue for Phase 2) along the (027) plane. As two damping curves cannot 

merge at the (017)  plane, a glide operation forms that generates phase discontinuities and 

amplitude oscillations in the PM. Meanwhile, local electronic structure and charge density are also 

modified by Oi, as revealed by EELS results. In this picture, interstitial oxygens serving as solitons 

bring singularities in both lattice and charge modulations, which is analogous to the case in 

hole-doped cuprates [20]. Periodic singularities introduce a secondary order into PM phase and 

amplitude along qs direction. Meanwhile, a new periodicity for (017)  planes related to SOM spots 

forms. Eventually, PM phase and amplitude are modulated by a SOM wave and dependent on the 

SOM wave-vector qs and position vector r, leading to intertwined PM and SOM, as defined in Eqn. 

(2). 

The distribution of singularities in modulation can be random [12,21] or periodic in real-space 

(this study) as a result of competing energies in the system. On the basis of our experimental 

observations, DFT calculations, and simulations, we propose a new paradigm of modulating phase 

and amplitude parameter spaces by a second-order wave (qs). As illustrated in the modulation 

formula (Eqn. (2)), a q-vector (e.g., q2=qs) is introduced into phase and amplitude field 

(u=u1[q1,A1(q2),φ1(q2)]) rather than as an independent Fourier component (u=u1(q1)+u2(q2)) [13]. 
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This concept is readily generalizable to multiple-q cases. Phase and amplitude for all Fourier 

components can be independently modulated by a second-order wave (qs
j), i.e. 

[ ,A ( ), ( )]s su u q q q= φ∑ j j
i i i i

i, j

. Based on this framework, additional degrees of freedom are essentially 

added in both phase and amplitude parameter spaces. This formulism provides a more accurate and 

universal depiction of the order parameter and can be widely applicable to numerous ordered 

systems, as singularities are ubiquitous [12,21-24,42]. 

 

Conclusions 

In summary, by purposely introducing excess holes in a prototype charge-ordered system 

LuFe2O4+δ, we observed a new type of modulation with its phase and amplitude modulated by a 

second order modulation wave using state-of-the-art electron microscopy. By directly measuring 

lattice and charge components at atomic scale, quasiperiodic singularities are found in both periodic 

lattice displacements and charge modulation. We show that due to the interplay between interstitial 

oxygens, lattice locking, and charge frustration, the phase and amplitude of primary modulation can 

be tuned by quasiperiodic singularities, engendering a second order modulation wave. Through 

introducing a q-vector into amplitude and phase parameter spaces, new modulation formulism is 

developed. Our study illustrates a new approach to manipulate singularity in modulation waves via 

targeted hole doping to understand intriguing behavior of quantum materials. 
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