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ABSTRACT 

A multifaceted first-principles approach utilizing density functional theory, 

evolutionary algorithms, and lattice dynamics was used to construct the phase diagram of 

silicon up to 4 TPa and 26000 K. These calculations predicted that (1) an anomalous 

sequence of face-centered cubic (fcc) to body-centered cubic (bcc) to simple cubic (sc) 

crystalline phase transitions occur at pressures of 2.87 TPa and 3.89 TPa, respectively, 

along the cold curve; (2) the orthorhombic phases of Imma and Cmce-16 appear on the 

phase diagram only when the anharmonic contribution to the Gibbs free energy is taken 

into account; and (3) a substantial change in the slope of the principal Hugoniot is 

observed if the anharmonic free energy of the cubic diamond phase is considered. 
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Reliable pressure–temperature phase diagrams of matter, from first-principles 

electronic structure and phonon calculations [1–5] and experimental measurements [6–

10], incorporate information on novel phases [11–14] that serve as the backbone of high-

pressure materials science. As one of the most-abundant elements on Earth, silicon (Si) is 

of great interest to many fields encompassing industry [15], planetary science [16], 

geophysics [17], and high-energy-density (HED) physics [18,19]. For its importance to 

HED physics, the Hugoniot and the liquid phase of Si away from the melting curve has 

recently been explored thoroughly by ab initio calculations [20–24] and shock 

experiments up to pressures of 2.1 TPa [25–27]. However, the solid-state phase diagram 

of Si has been known from experiments only to a pressure range below 248 GPa and 

mostly along the 300 K isotherm [28–39].   

For various solid crystalline structures of Si, experiments over the past decades 

have established the existence of the semiconductor cubic-diamond phase (Si-I: cd) up to 

around 12.5 GPa [28–35], followed by the metallic phases of β-tin (Si-II) in the 8.8-to-16 

GPa [28–35], body-centered orthorhombic Imma (Si-XI) in the 13-to-16 GPa [36], simple 

hexagonal (Si-V: sh) in the 14-to-38 GPa [31–34], base-centered orthorhombic Cmce (Si-

VI, previously called Cmca) in the 40-to-42 GPa [37], hexagonal close packed (Si-VII: 

hcp) in the 40-to-78 GPa [33,35,38], and face-centered cubic (Si-X: fcc) in the 78-to-248 

GPa pressure regions [35,38]. At the much higher-compression pressures experimentally 

accessible today, it was still unknown in which phases Si crystallizes. Furthermore, the 

solid-state phase transitions experimentally verified so far (up to ~248 GPa) were limited 

to the room-temperature isotherm, along with cold compression curve ab initio 

calculations [40–42]; and the melting curve was largely unknown (experimental 
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observations only up to ~35 GPa [43–46]). A recent computational work [47] has 

examined a solid-state-only phase diagram up to 80 GPa without giving the melting line. 

The melting curve is essential not only for the completeness of a phase diagram but also 

to HED and other scientific applications. For example, knowing at what conditions 

shock-compressed Si melts is of great significance to inertial confinement fusion (ICF) 

target design using a Si ablator [18]. In addition, understanding the high-pressure 

chemistry involving Si-based coordination compounds inside super-Earth planets [48], 

where extremely high-pressure–temperature (P–T) conditions can be up to ~4700 GPa 

and ~18000 K, respectively, relies on an accurate and complete high P–T phase diagram 

with a known melting curve.  

 In this letter, we present the first-principles construction of a complete phase 

diagram of Si up to multi-TPa pressures, through lattice dynamics and density functional 

theory (DFT) [49] based electronic structure calculations. The calculated high P–T phase 

diagram of Si revealed new phases under multi-TPa conditions and also highlighted the 

importance of the anharmonic treatment during calculation of ionic-thermal Helmholtz 

free energy in order to predict accurate phase boundaries and the correct slope of the 

principal Hugoniot. 

Our first-principles calculations were performed with the Vienna ab initio 

simulation package (VASP) [50–52] DFT code with a plane wave basis, which uses the 

Perdew–Burke–Ernzerhof (PBE) [53] generalized gradient approximation (GGA) [54] 

exchange-correlation functional and projector augmented wave (PAW) pseudopotentials 

[55] of 12 active electrons with an energy cutoff of 1100 eV. All calculations and fitting 

details including convergence tests can be found in the Supplementary Material [56]. 
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Over the past decade, powerful evolutionary algorithm codes, such as XtalOpt [60], 

CALYPSO [61], and USPEX [62-64] were developed for predicting high-pressure 

crystalline structures. Here, we have employed USPEX for a pressure-based geometry 

and structure optimization with 16 different cases having N=1,2,3,..,16 atoms 

respectively in a conventional unit cell under periodic boundary conditions, with 3-5 

searches being performed for each target pressure and N. The first generation of random 

structures had a population size of 10 to 40 structures, run over 20 to 40 subsequent 

generations until convergence. The structures having the lowest enthalpy were used as 

the seed for next-generation refinement. Each subsequent generation was created using 

60% of the best structures of the previous generation by using a combination of heredity 

(65%), randomness (10%), rotational mutation (10%) and lattice mutation (15%). These 

structure searches resulted in eight candidate structures: cubic diamond (cd or Pearson 

symbol: cF8), body-centered tetragonal/beta-tin (bct/b-Sn or tI4), simple hexagonal (sh 

or hP1), hexagonal close-packed (hcp or hP2), double hexagonal close-packed (dhcp or 

hP4), face-centered cubic (fcc or cF4), body-centered cubic (bcc or cI2), and simple 

cubic (sc or cP1). These structures were considered for the cold compression curve (T = 

0 K) calculations. It is noted that the dhcp, bcc, and sc phases have not yet been measured 

in experiments. In addition, we have also examined two other candidate structures: base-

centered orthorhombic (Cmce or oC16) and body-centered orthorhombic (Imma or oI4). 

The Cmce structure was indicated in an x-ray diffraction experiment by Hanfland et al. 

[37] at pressures near 40 GPa, whereas the Imma phase was observed in the pressure 

range of 13 to 16 GPa in earlier experiments [36].  
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The lattice constants were varied, and axial ratios were optimized (for non-cubic 

structures) for each of these ten structures by performing single point calculations, such 

that these geometries created by the variations covered the entire pressure domain up to P 

= 4 TPa. For these modifications, we used 3´3 (diagonal) transformation matrices with 

strain rate e being the controlling parameter. In such matrices, all the diagonal terms are 

1+e  when first scaling the volume, while the second or third diagonal terms are replaced 

by  when the axial (b/a or c/a) ratios are scaled subsequently by keeping the 

volume of the unit cell fixed. The internal parameters for three Imma (corresponding to 

pressures of 6.2 GPa, 10.7 GPa, and 17.9 GPa) and five Cmce (2.8 GPa, 10.9 GPa, 22.4 

GPa, 35.1 GPa, and 47.9 GPa) geometries were optimized. For the rest, the internal 

parameters of the nearest lower pressure, for which optimization was performed, were 

used. Finally, the resulting discrete lattice Gibbs free energies (enthalpies) for each 

candidate structure at different pressures (zero temperature) were fitted with an 

augmented stabilized jellium model equation of state (ASJEOS) [65]: 

 

  

 

with g(x) = 1 + a (1-x)4–b (1-x)5 + g (1–x)6 and the volume ratio x = v/v0. The ASJEOS 

fitting gives better results far away from equilibrium, than the more conventional third-

order Birch–Murnaghan (BM) EOS [66] fitting. 

 Next, the finite-temperature thermodynamic variables were evaluated by 

performing integration over the phonon density of states (DOS). The force constants for 
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the first-principles phonon DOS calculations were obtained using the density functional 

perturbation theory (DFPT) [67] calculations in 128-atom supercells with the 

convergence criteria being the electronic energy error <10–8 eV/atom and the ionic force 

error <10–3 eV/Å. The results were thereafter used to solve the phonon eigenvalue 

problem [68,69], for eigenvalues of the Hessian of the phonon potential energy, and 

calculate the phonon spectra Z(w). Within the quasi-harmonic approximation (QHA), the 

finite-temperature ionic contribution to the Helmholtz free energy Fi,QH was calculated 

using 
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mapping of the Fi-th,QH(P,T) manifests itself in an incorrect slope of the principal 

Hugoniot and will be explained later. These specific cases necessitated the introduction 

of an anharmonic correction term.  

We resorted to the use of thermodynamic integration [71] for this correction, 

using the averaged internal energy U obtained from quantum molecular dynamics 

(QMD), and subtracting from it the ionic thermal kinetic energy, the U from the cold 

compression curve, and that from QHA. This was done with respect to a reference 

temperature Tref such that Tmelting >Tref > TDebye and 

 

 

 

where T is the ionic temperature and Tel is the electronic one.  
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ASJEOS to obtain the analytic G along that isotherm. We could then identify the most 

stable phase in each (P,T) point by identifying the structure with the minimum G.  

 The results for the 300 K isotherm are shown by Fig. 1, in which the predicted 

relative Gibbs free energy for each structure is plotted as a function of pressure. Taking 

Fig. 1(a) as an example, the calculations show that the Imma phase is stable in the 

pressure range of 13.6 to 16 GPa, and the Cmce phase takes over for pressures between 

33.2 GPa and 40.6 GPa. Fig. 1(b) indicates the fcc-to-bcc-to-sc transitions (the 

corresponding pressures are 2.87 TPa and 3.89 TPa respectively for T = 0 K). 

To determine the melting curve, we have performed QMD simulations for 

canonical/constant-NVT ensemble in supercells with an initial solid structure in each 

phase under periodic boundary conditions. The temperature was controlled by a Nosé–

Hoover thermostat [72]. The isochores for which melting point was evaluated had a range 

of density spanning from 2.33 g/cm3 (for cd) to 21.27 g/cm3 (for sc). This method for 

detecting the melting point was previously used to predict the melting curve of sodium 

[73,74]. A single special k point of (1/4, 1/4, 1/4) was used for sampling in the Brillouin 

zone (1BZ), as was introduced by A. Baldereschi [75]. The time step was varied from  

0.26 to 0.63 fs, being an inverse function of the square root of temperature and the cube 

root of the density, with a total of 4000 to 6500 QMD steps for each density/temperature 

point. Converged results were reached with a large number (216 to 256) of atoms in a 

supercell.  

Fig. 2 illustrates two examples of how we determine the melting point from QMD 

calculations for the solid–liquid transition for two isochores of r = 2.57 g/cm3 in the cd 

phase and r = 13.55 g/cm3 in the bcc phase. Figs. 2(a) and 2(b) indicate that at the 
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melting point, the pressure exhibits a discontinuity. The melting point (temperature, 

pressure) was considered to be the average of both sides of the discontinuity, e.g., 

 (1475 K, 6.1 GPa) for cd and (23950 K, 3072.4 GPa) for bcc. 

Figs. 2(a) and 2(b) imply that the pressure drop with increasing temperatures for 

the cd–solid to liquid transition correspond to an increase in density of Si upon melting, 

whereas a pressure jump for the bcc phase corresponds to a decrease in density. This 

opposing density change behaviors would imply a negative slope of the melting curve for 

the cd phase and a positive slope for the bcc phase, according to the Clausius–Clapeyron 

relation. This is proven to be true for the complete melting curve, to be shown in Fig. 3. 

Having obtained these discrete melting points for all phases up to  

4 TPa, we fit them with the Kechin equation [76], a modified form of the Simon–Glatzel 

equation [77] with parameters ai (i = 1,2,3) and (P0,T0), to all the (Tm,Pm) melting points 
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boundary [corresponding to the pressure discontinuity in Figs. 2(a) and 2(b)]. One can 

see that upon melting, the oscillation amplitude of g(r) becomes monotonically 

decreasing, which is in contrast to the solid state.  

 Finally, the resulting high P–T phase diagram of Si up to 4 TPa and 26000 K is 

shown in Fig. 3. The available experimental measurements on the melt curve up to  

~35 GPa are also compared. Overall, they are in good agreement with our melting 

temperature predictions within ±150 K. Given the imperfect crystal structures often 

encountered in experiments, the observed melting temperature being ~50 to 150 K lower 

than our predictions for a perfect crystal is reasonable since defects and anisotropy could 

initiate melting earlier. The previous experimental observation of different phases is also 

marked in Fig. 3 along the T = 300 K isotherm, which again agrees well with our 

calculated phases in the corresponding pressure ranges. The P-ρ EOS plot for 100 K, 

which demonstrates the density jumps upon phase transitions, also shows an 

approximately tenfold increase in density on compressing from ambient pressure to 4 

TPa. The principal Hugoniot for a shock wave is determined by solving the Rankine–

Hugoniot equation with our multiphase EOS data obtained in this work. The slightest 

inaccuracy in the initial internal energy E0 could drastically affect the slope of the 

Hugoniot at low pressures, as can be seen in Fig. 3 on comparing the Hugoniot obtained 

by using the quasi-harmonic versus the anharmonic EOS data. The Hugoniot obtained 

inclusive of anharmonic calculations show agreement with recent experimental 

observations [46,78]. One interesting observation is that Cmce did not show up as a 

thermodynamically stable phase at T=0 K in our PBE-GGA calculations, although 



11 
 

previous LDA calculations [79] have shown Cmce to be stable for a narrow range of 

pressure along the cold curve. 

 A pressing question was to have a phenomenological explanation for the presence 

of the anomalous fcc-to-bcc-to-sc transition (with reduction in coordination number from 

12-to-8-to-6) after a span of ~2.8 TPa, where fcc is stable. These high-pressure phases are 

dynamically stable with no negative phonon frequency found [56]. Upon detailed 

investigation of the electronic properties, we observed that a dip starts developing in the 

electronic DOS near the Fermi level, as can be seen in left side of Fig. 4(a-c). This dip 

becomes more pronounced with increasing pressures along the cold curve. The 

corresponding electron localization function (ELF) isosurface plot in the right side of Fig. 

4(a-c) gives a more physical explanation of the trend in discussion. Electrons move from 

the hybridized orbital space to the interstitial space stabilizing the ionic structure at high 

pressures. Such a deviation from the expected free-electron-like behavior, causing 

structure change, has also been observed in the paired Cmce phase in dense lithium [80]. 

However, the dip never develops to a band gap, a phenomenon that leads to the formation 

of electrides, as is observed in elements like calcium [81]. 

 In summary, we have constructed a high-pressure–temperature phase diagram of 

Si up to 4 TPa and 26,000 K, respectively, using first-principles electronic structure and 

phonon calculations. This yielded a new prediction on the existence of counterintuitive 

high-pressure fcc-to-bcc-to-sc transitions. After introducing anharmonic calculations, the 

Imma and Cmce phase were predicted on the phase diagram for the first time, matching 

earlier experimental observations.  
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Figure Captions 

 

 

FIG. 1. The calculated Gibbs free energy for each phase at T = 300 K in (a) the low 

pressure and (b) the high pressure regions are plotted, which demonstrates six phase 

transitions: the cd–β-Sn transition at ~12 GPa, the β-Sn–Imma transition at ~14 GPa, the 

Imma–sh transition at 16 GPa, the sh–Cmce transition at ~33 GPa, the fcc–bcc transition 

at 2.8 TPa, and the bcc–sc transition at 3.4 GPa. The inset in (a) magnifies the 11-18 GPa 

region. 
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FIG. 2. The pressure discontinuity is used to determine the melting point for Si, e.g., in 

the (a) cd phase and (b) bcc phase. [(c), (d)] The change in g(r) on the solid–liquid 

boundary. 
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FIG. 3. The predicted high P–T phase diagram of Si with the gray horizontal line 

corresponding to the 300 K isotherm and the thick and dashed blue lines representing the 

principal Hugoniot using quasiharmonic (QH) and anharmonic (AH) analyses. The 

experimental results [29, 33–35, 37, 43–46] on melting and phase observations are 

marked by symbols. The shaded zone around the (red) melting curve denotes the 

uncertainty in our melting-curve calculations. Also, it should be noted that the Hugoniot 

(AH) meets the melting curve beyond the triple point.  
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FIG. 4. The electronic density of state (DOS) and the electron localization function (ELF) 

for fcc–Si with increasing pressures. The Fermi energy (EF) has been subtracted from the 

electronic energies.  

 

 

 

 

 

 

 


