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Abstract

Elastic waveguides with time-modulated stiffness feature a frequency-periodic dispersion spec-

trum, where branches merge at multiple integers of half the modulation frequency and over a finite

wavenumber range. In this range, frequency becomes complex, with its real part remaining con-

stant. The vanishing group velocity associated with these flat bands leads to frequency-selective

reflection at an interface between a non-modulated medium and a time-modulated one, which con-

verts a broadband input into a narrowband output centered at the half modulation frequency. This

behavior is illustrated in an elastic waveguide in transverse motion, where modulation is imple-

mented experimentally by an array of piezoelectric patches shunted through a negative electrical

capacitance controlled by a switching circuit. The switching schedule defines the modulation fre-

quency and allows the selection of the output frequency. This implementation is suitable for the

investigation of numerous properties of time/space modulated elastic metamaterials, such as non-

reciprocity and one-way propagation, and can lead to the implementation of novel functionalities

for acoustic wave devices operating on piezoelectric substrates.
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Research on time-dependent material properties has received considerable attention over

the years. Parametric effects in time-modulated media have long been used for amplification

of electromagnetic waves [1, 2] and surface acoustic waves [3, 4]. Parametric amplification in

electromagnetic waveguides has been investigated in periodic [5–10] and non-periodic mod-

ulation schemes [11], while spatio-temporally modulated gratings have been proposed for

radio-frequency communication systems that are shielded from echos and reflections during

transmission [12]. In acoustics, isolation levels as high as 40 dB within the audible range

have been achieved with acoustic circulators consisting of cavities with time-dependent vol-

umes [13], and asymmetric transmission has been reported in an acoustic waveguide with

a time-dependent scattering element [14]. Recently, traveling-wave modulation of physical

properties has been explored for non-reciprocal wave motion in optics, acoustics, mechanics

and heat transfer [15–22]. Non-reciprocal components connected in 1D and 2D lattice ar-

rangements [23] have been investigated for non-trivial wave topologies that support defect

and backscattering immune propagation [24, 25]. In mechanics, numerous theoretical studies

have investigated time-dependent material properties and their potential to produce non-

reciprocity [26]. However, the physical implementation of dynamically changing stiffness

or mass distributions mostly remains an open challenge. Among the suggested approaches,

light induced softening in GexSe1−x glasses has been explored [27], while Coriolis-type effects

have been exploited to produce a time-dependent moment of inertia in a pendulum with a

radially moving mass [28]. More recently, a phononic crystal with spatio-temporal modula-

tion of electrical boundary conditions in a stack of piezoelectric elements has been described

in [29]. Magneto-elastic media interacting with an external magnetic field [30] and magneto-

rheological fluids [31] are also suggested solutions for traveling wave modulation [32].

In this Letter, we show that time-modulated stiffness in elastic waveguides produces a

frequency-periodic dispersion spectrum, where branches merge at rωm/2, where ωm is the

modulation frequency and r is an integer. Merging occurs over a finite wavenumber range,

within which frequency is complex, with a constant real part. This produces a flat dis-

persion branch that leads to a standing, or non-propagating, wave which is parametrically

amplified [1, 3, 4]. Analytical predictions of the frequency-periodic spectrum with merging

branches and of wavenumber gap associated with the flat band are reported for a dispersive

elastic waveguide in transverse motion. Also, we demonstrate, numerically and experimen-

tally, the frequency-selective reflection properties of an interface between a non-modulated
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waveguide and a modulated one, which converts a broadband incident wave (input) into a

narrowband reflected wave (output), centered at rωm/2. Experimental implementation of

the concept consists in an aluminum beam partially covered by an array of piezoelectric

patches shunted through negative capacitance (NC) circuits, which control the equivalent

stiffness of the beam [33]. Periodic switching of the circuit connection with the patches pro-

duces a square-wave modulation of the waveguide stiffness according to a selected modulation

frequency. The proposed experimental platform lends itself to the exploration of space/time

modulations as an effective means to achieve non-reciprocal wave motion [34]. In addition,

the use of actively controlled shunted patches may be pursued for the study of Parity-Time

(PT) symmetric photonic and phononic systems that feature alternating regions of gain and

loss. Novel functionalities would result from the nontrivial, non-conservative wave interac-

tions and phase transitions, and may open new prospects for active control of elastic waves,

sound and light [35].

We consider the transverse motion of a beam with time-dependent material properties,

which is governed by:

D(t)
∂4w(x, t)

∂x4
+

∂

∂t

[

m(t)
∂w(x, t)

∂t

]

= 0, (1)

where D = EI is the bending stiffness, with E denoting Young’s modulus, and I is the

second moment of area of the beam cross section. Also, m = ρA denotes the beam linear

mass, where ρ is the density and A is the cross-sectional area. We assume a constant mass

m(t) = m, and introduce a time-dependent stiffness D(t) = D(t+ Tm), where Tm = 2π/ωm.

A solution of the resulting equation of motion is sought in the form:

w(x, t) = ei(ωt−κx)

+∞
∑

n=−∞

ŵne
inωmt. (2)

For simplicity, we assume harmonic modulation, i.e. D(t) = D0(1 + αm cos(ωmt)), where

αm = Dm/D0 defines the modulation amplitude. Dispersion relations are obtained by solv-

ing a quadratic eigenvalue problem in terms of ω upon imposing a wavenumber κ. The

resulting dispersion diagrams for αm → 0 and αm 6= 0 in Fig. 1 show the real and the

negative of the imaginary part of the frequency associated with each wavenumber. No-

tably, time modulation produces a family of branches that are ωm-periodic in the frequency

domain. This is consistent with the theoretical findings on dielectric time modulation in

electromagnetic waveguides [36]. The branches intersect at frequency rωm/2, as illustrated
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FIG. 1. Frequency-periodic dispersion diagrams for a time-modulated waveguide (beam in bend-

ing). Black and red lines respectively denote the real part and (the negative of) the imaginary part

of frequency. (a) αm → 0: the intersection between the n = 0 and n = −1 occurs at frequency

ωm/2 and κ∗; the imaginary component is nil as a result of the vanishing modulation amplitude.

(b) αm = 0.4: merging of the dispersion branches at rωm/2 and corresponding non-zero imaginary

frequency. The κ-bandgap range κ ∈ [κ−, κ+] predicted by Eq. 5 is highlighted by the shaded

blue region

.

for αm → 0 in Fig. 1a. For finite αm, intersecting branches merge over a finite wavenumber

range (Fig. 1b), within which frequency has a nonzero imaginary component and a constant

real part. This range of wavenumbers was denoted as a κ-bandgap in [36]. In analogy with

frequency bandgaps, plane wave harmonic excitation at frequency/wavenumber pairs corre-

sponding to the flat bands leads to a stationary, or non-propagating, wave. In the absence

of dissipation, the insurgence of an imaginary frequency component causes the amplitude of

the wave to increase exponentially as a result of parametric amplification [3].

We estimate the width of the κ-bandgap by restricting our attention to the branches

associated with n = 0 and n = −1 orders in Eq. 2, which gives the following characteristic

equation:

(ω2 − γκ4)
[

(ω − ωm)
2 − γκ4

]

−
(αmγκ

4

2

)2

= 0, (3)

with γ = D/m. For αm → 0, these branches intersect at point κ∗ =
√

ωm/(2γ1/2) and

ω∗ = ωm/2 (Fig. 1a), while for αm 6= 0, the solution of Eq. 3 is:

ω =
1

2

[

ωm −

√

ω2
m + 4γκ4 − 2

√

γκ4(4ω2
m + α2

mγκ
4)

]

, (4)

where ω is complex if ω2
m+4γκ4−2

√

γκ4(4ω2
m + α2

mγκ
4) < 0. This identifies the wavenumber

range κ ∈ [κ−, κ+], with:

κ± = 4

√

ω2
m

2γ(2∓ αm)
(5)

The corresponding complex frequency ω = ωr + iωi, has a real part ωr = ωm/2 that is

constant with respect to the wavenumber.
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FIG. 2. Concept of a single-port system converting a broadband input into a narrowband output

through time-modulation. An incoming broadband wave is converted into a narrowband output

at a frequency defined by the modulation frequency ωm = 2π/Tm, which can be used as a tuning

parameter for selecting the output frequency content.

We investigate the behavior of a wave incident on an interface between a waveguide

with constant properties and one with modulated Young’s modulus, which quantifies stiff-

ness (Fig. 2). Based on the observations above and on published theoretical results for

space-time modulated non-dispersive waveguides [17], we expect the unique characteris-

tics of the time-modulated dispersion spectrum to be reflected in the reflection properties

of the interface. Specifically, a plane wave propagating in the non-modulated media at

a frequency/wavenumber pair corresponding to the κ-bandgap will be mostly reflected at

the interface as a result of its inability to propagate in the time-modulated waveguide. The

phenomenon could be also explained by power conversion between harmonic components, as

done for waves propagating from homogeneous to time-modulated domains in non-dispersive

waveguides [17]. In this context, we consider the waveguide with interface as a conceptual

single-port device that selectively filters a dominant frequency component out of a broad-

band input. The dominant output frequency of such device (Fig. 2) is produced from the

same broadband input by selecting the modulation frequency ωm.

The concept is illustrated by evaluating the transient response of the waveguide with

interface through a finite-difference time-domain (FDTD) approach. In the simulations, we

consider a time-constant domain of length Lh = 0.3 m, while the modulated one is Lm = 0.48

m long. These dimensions are chosen in accordance with the considered experimental set-up.

The beam has rectangular cross-section with I/A = 8.67× 10−4 m. The density is ρ = 2700

kg/m3 , while the Young’s modulus is E0 = 69.9 GPa. In the time-modulated domain, the

Young’s Modulus obeys a square-wave modulation law:

E(t) = E0 +
αmE0

2

{

sgn
[

cos(ωmt)
]

− 1

}

, (6)

with αm = 0.14, which is consistent with values produced during experiments. A wave

is injected through a perturbation applied at the free end of the time-constant beam as

a 2-cycle tone-burst with center frequency fexc = 5 kHz. The frequency content of input

5



FIG. 3. Numerical results for the response of the single-port system for three modulation frequen-

cies (fm = 10, 12, 15 kHz). (a) Single point FTs show that a broadband input (black solid line)

is converted into narrowband outputs centered at fm/2: fm = 10 kHz (red dashed line), fm = 12

kHz (blue solid line) and fm = 15 kHz (green dash-dotted line). (b-d) Normalized 2D-FT’s magni-

tude |Ŵ(κ, ω)| associated with the wavefield w(x, t) shows narrowband frequency reflection of the

reflected waves in the κ < 0 half plane at fm/2, which is in agreement with the location of the flat

branches predicted theoretically (gray lines).

win(xp, t) and output wout(xp, t) are evaluated by probing a single location xp close to the

interface in the time-constant domain. The corresponding Fourier transform (FT) shown

in Fig. 3a displays the frequency bandwidth of the input and of the output for modulation

frequencies fm = 10, 12, 15 kHz. The wave motion w(x, t) in the time-constant waveguide can

be represented in the frequency/wavenumber domain Ŵ(κ, ω), which is obtained through

spatial and temporal FT (2D-FT) [37]. The contour plots of the magnitude |Ŵ(κ, ω)|

in Fig. 3b-d effectively locate the spectral content of the wavefield along the theoretical

dispersion branches. The κ > 0 region corresponds to forward (incident) waves, while the

κ < 0 half plane is associate with backward (reflected) waves. This representation effectively

illustrates how, at the interface, an incident broadband wave is converted into a reflected

narrowband wave centered at fm/2. For reference, the half-power bandwidth of input and

output is approximately 3.4 kHz and 0.8 kHz respectively, which corresponds to a output-

to-input bandwidth ratio of approximately 24% for all considered modulation frequencies.

Notably, the output center frequency is always at fm/2, which illustrates the two-fold effect

of the time modulation on the reflected wave: a frequency conversion and a bandwidth

reduction.

Time-periodic stiffness modulation of the elastic waveguide is implemented by employ-

ing an array of piezoelectric patches bonded to the beam and shunted through an electrical

impedance (Fig. 4). The resulting electro-mechanical waveguide has an effective elastic mod-

ulus defined by the electrical impedance of the shunting circuit [38, 39], which is the result

of the strain-voltage coupling inherent to the piezoelectric effect. Resonant shunting circuits

have been exploited to induce tunable bandgaps in beam waveguides [40], while broadband

stiffness control has been achieved through NC circuits [41]. According to [41, 42], the
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FIG. 4. Experimental set-up for observation of time-modulation of the stiffness in a beam through

negative capacitance shunts and switches. (a) The beam is equipped with 11 pairs of piezoelectric

patches, each connected to a NC circuit. (b) A switch opens and closes the patch-NC circuit series

with a periodic law, inducing the stiffness to vary between two values with period Tm.

elastic modulus ESU
p of a piezoelectric patch connected to a NC circuit with capacitance

−C ′ is given by:

ESU
p = EE

p

C ′ − CT
p

C ′ − CS
p

(7)

where EE
p is the elastic modulus of the piezoelectric patch with short-circuited electrodes, CT

p

and CS
p = CT

p (1−k2
31) respectively are the stress-free and strain-free piezoelectric capacitance

values, and k31 is the piezoelectric coupling coefficient for the longitudinal straining of a

through-the-thickness polarized patch. Values of C ′ > CT
p ensure stability of the patch [33],

while producing significant changes in elastic modulus with respect to the open circuit value

ED
p = EE

p /(1 − k2
31) for |C ′| → 0. The negative impedance converter circuit of Fig. 4a

implements a capacitance CN = −C ′ = −R2/R1C [41], where the resistor R0 prevents

saturation of the capacitor, which would lead to instability [42]. Operating a switch that

breaks the series connection between the piezoelectric transducer and the NC shunt can vary

the equivalent elastic modulus of the patch between the closed circuit (ESU
p ) and the open

circuit (ED
p ) values (Eq. 7). Periodic on-off operation of the switch at period Tm, induces a

square-wave stiffness modulation at the fundamental frequency ωm = 2π/Tm. Based on beam

configuration, and shunted piezoelectric parameters, the modulation amplitude obtained is

αm ≈ 0.14, which is estimated according to the procedure described in the Supplementary

Materials (SM).

The experiments employ an array of 11 pairs of piezoelectric patches bonded to portion of

a slender aluminum beam with rectangular cross section at regular spatial intervals (Fig. 4).

All patches are connected in series to NC shunts (see SM for details on experimental set-up).

The beam is excited by a piezoelectric transducer bonded at its free end, which induces a

transversely polarized wave propagating along the length. The corresponding velocity field

w(x, t) is measured by a scanning laser Doppler vibrometer (SLDV). The recorded spatio-

temporal wavefield w(x, t) is analyzed in the frequency/wavenumber domain, where incident

and reflected components are separated by identifying forward and backward propagating
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FIG. 5. Experimental results for the response of the beam waveguide for three modulation frequen-

cies (fm = 10, 12, 15 kHz). (a) Single point FTs show the conversion of a broadband input (black

solid line) into narrowband outputs centered at fm/2: fm = 10 kHz (red dashed line), fm = 12

kHz (blue solid line) and fm = 15 kHz (green dash-dotted line). (b-d) Normalized 2D-FT’s magni-

tude |Ŵ(κ, ω)| associated with the wavefield w(x, t) shows narrowband frequency reflection of the

reflected waves in the κ < 0 half plane at fm/2, which is in agreement with the location of the flat

branches predicted theoretically (gray lines).

wavefields. This allows the separation of input w(in)(xp, t) and output w(o)(xp, t) compo-

nents at the probe location xp which, as in the numerical investigations, is located near the

interface.

Three experiments are performed by inducing a broadband excitation signal centered at 5

kHz, while modulating the effective stiffness at frequency fm = 10, 12, 15 kHz. The analysis

of the frequency spectrum of incident and reflected waves at the probe location (Fig. 5a)

confirms that the reflected waves are characterized by a reduced bandwidth and centered at

fm/2. The half-power bandwidth of input and output signals is again evaluated in order to

quantify the output-to-input bandwidth ratio. The input bandwidth is 3.2 kHz, while the

output bandwidth is respectively 1.25 kHz, 1.14 kHz and 1.61 kHz for fm = 10, 12, 15 kHz.

These correspond to 40%, 35% and 50% output-input bandwidth ratios. Time modulation

effects in terms of bandwidth and center frequency are also illustrated in the contour plots

of Fig. 5b-d. While the dispersion branch associated with the incident wave in the κ > 0

region remains effectively unaltered in all three experiments, the reflected wave in the κ < 0

region is narrowband and centered at 5, 6, 7.5 kHz. We conclude that the system indeed

behaves as predicted by it converting the broadband signal into a narrowband signal at

center frequency fm/2.

In conclusion, we investigated time modulation effects in terms of reflected bandwidth

and center frequency, and observed them experimentally for the first time through an electro-

mechanical waveguide consisting of a beam in transverse motion, with an array of piezo-

electric patches connected to switchable NC shunts. This enables control and periodic

modulation of stiffness according to a square-wave law. Numerical and experimental results

confirm the analytical predictions in terms of the existence of a wavenumber bandgap char-
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acterized by flat real frequency bands and a non-zero imaginary frequency component. In

the presence of an interface, this produces the selective reflection of an incident broadband

wave at integer multiples of half the modulation frequency, which is a tuning parameter

that determines the frequency content of reflected waves. The findings suggest application

of the concept as a single-port filtering device that can be tuned through the selection of the

modulation frequency, and that may be implemented in acoustic, mechanical or photonic

platforms. The experimental implementation also provides a platform that allows the explo-

ration of several unique properties associated with time and/or space modulation, including

filtering, frequency conversion, non-reciprocity, PT symmetry and topological pumping.
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