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The multi-scale entanglement renormalization ansatz (MERA) postulates the existence of quan-
tum circuits that renormalize entanglement in real space at different length scales. Chern insulators,
however, cannot have scale-invariant discrete MERA circuits with finite bond dimension. In this
Letter, we show that the continuous MERA (cMERA), a modified version of MERA adapted for field
theories, possesses a fixed point wavefunction with nonzero Chern number. Additionally, it is well
known that reversed MERA circuits can be used to prepare quantum states efficiently in time that
scales logarithmically with the size of the system. However, state preparation via MERA typically
requires the advent of a full-fledged universal quantum computer. In this Letter, we demonstrate
that our cMERA circuit can potentially be realized in existing analog quantum computers, i.e., an
ultracold atomic Fermi gas in an optical lattice with light-induced spin-orbit coupling.

A quantum many-body system has a Hilbert space
whose dimension grows exponentially with system size,
making exact diagonalization of its Hamiltonian imprac-
tical. Fortunately, tensor networks [1, 2] are capable of
efficiently representing the ground states of many sys-
tems with local interactions [3–8]. Another powerful tool
in many-body physics is the renormalization group (RG)
[9, 10], which uses the fact that the description of a phys-
ical system can vary at different length scales, forming a
hierarchical structure. The RG provides a systematic
prescription to transform an exact microscopic descrip-
tion to an effective coarse-grained description. Appli-
cations of RG range from critical phenomena in con-
densed matter to the electroweak interaction in high-
energy physics [11].

One approach which combines tensor networks and
renormalization group is called the multi-scale entangle-
ment renormalization ansatz (MERA) [3, 7]. MERA pro-
poses a quantum circuit acting on a state which is ini-
tially entangled at many length scales. The two elemen-
tary building-block tensors of the MERA, isometries and
disentanglers, are discrete unitary gates which physically
implement RG in real space by successively removing en-
tanglement at progressively larger length scales. Interest-
ingly, since the circuit depth only increases logarithmi-
cally with the system size, a reversed MERA circuit can
efficiently prepare a state with finer entanglement struc-
ture from a weakly-entangled initial state. In practice,
MERAs are most convenient when the disentanglers and
isometries are independent of the length scale [12–18].
The state that is left unchanged in the thermodynamic
limit by these scale-invariant unitaries is termed a fixed-
point wavefunction.

Experimentally, a reversed MERA circuit might be
used to prepare exotic states, such as chiral topological
states, which include integer quantum Hall states and
certain fractional quantum Hall states [19, 20]. Some
fractional quantum Hall systems are believed to feature

anyons useful for topological quantum computation [21].
Due to their great theoretical interest, it would be useful
to be able to study these systems under highly controlled
settings, such as in ultracold atomic gases. However, to
create a chiral topological state in the lab, we must not
only engineer the parent Hamiltonian, but also cool the
system down to the ground state. The latter is usually
hard experimentally for topological states due to their
long-range entanglement [22]. A reversed MERA circuit
can possibly resolve this issue by directly generating the
target chiral topological state from another state that is
easier to obtain by cooling.

Here, as a first step towards finding a MERA for a
fractional quantum Hall state, we instead search for a
MERA whose fixed-point wavefunction describes an (in-
teger) Chern insulator. A Chern insulator is an inte-
ger quantum Hall state on a lattice and is therefore a
simpler system than the fractional quantum Hall state.
However, there are no-go theorems stating that a MERA
cannot have a Chern insulator ground state as its fixed-
point wavefunction [23–26]. Since conventional MERA
only contains strictly local interactions, adding quasi-
local interactions with quickly decaying tails could possi-
bly circumvent the no-go theorems. A modified formal-
ism of MERA adapted for field theories called continuous
MERA (cMERA) [27] can include such quasi-local inter-
actions [28]. The distinction between strictly local and
quasi-local interactions is that the interaction range of
the former is finite, while the latter are a broader class
that includes interactions decaying faster than any power
law with respect to distance, e.g., exponentially decay-
ing interactions. In contrast to the MERA paradigm,
in which the renormalization circuit consists of discrete
unitary gates, cMERA treats the circuit time, which cor-
responds to the length scale, as a continuous variable
and generates continuous entanglement renormalization
using a Hermitian Hamiltonian.

In this Letter, we show that a type of Chern insula-
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tor wavefunction can be generated by a scale-invariant
cMERA circuit. The Chern insulator model we consider
is the Bernevig-Hughes-Zhang model in the continuum
limit [29]. In addition, we propose a possible experimen-
tal realization of the cMERA circuit with neutral 171Yb
atoms in an optical lattice by introducing spin-orbit cou-
pling.

Our work complements and can be contrasted with
Refs. [30, 31]. While Ref. [30] previously developed a
cMERA for the continuous Chern insulator model men-
tioned above, our work uses a scale-invariant disentan-
gler. Other prior work in Ref. [31] presented a scale-
invariant entanglement renormalization for a two-band
Chern insulator model. While Ref. [31] makes use of
the lattice structure and quasi-adiabatic paths between
a series of gapped Hamiltonians, our cMERA approach
allows smooth time evolution and emphasizes the contin-
uum physics. Another difference is that the RG evolu-
tion in Ref. [31] involves interactions decaying with dis-
tance faster than any power-law function but slower than
an exponential, whereas our cMERA only needs an ex-
ponentially decaying interaction. Other known methods
for representing chiral topological states include artificial
neural network quantum states [32–34], projected entan-
gled pair states [25, 35–37], matrix product states [38],
and polynomial-depth unitary circuits [39].

Review of cMERA.—Within the framework of con-
ventional MERA [3, 7], disentanglers Vu and isome-
tries Wu are strictly local discrete unitary operators em-
ployed to renormalize entanglement at layer u ∈ Z+. In
cMERA [27], we simply replace them by continuous uni-
tary transformations, which are infinitesimally generated
by self-adjoint operators K(u) and L: Vu → e−iK(u)du,
Wu → e−iLdu. The notation du denotes an infinitesimal
RG step, and u ∈ (−∞, 0]. When the continuous variable
u approaches zero, the system is said to be at the ultravi-
olet (UV) length scale, possessing both short-range and
long-range entanglement. As u→ −∞, the system flows
to the infrared (IR) length scale, where short-range en-
tanglement is removed and nearly all degrees of freedom
are disentangled from each other. Note that the genera-
tor of disentangler K(u) can in general depend on scale u.
A cMERA is called scale-invariant if K(u) is independent
of u.

To emulate the coarse-graining behavior of isometries
in conventional lattice MERA, L is chosen to be the
scaling transformation in field theory. For example, for
a single fermion field ψ(x) in d spatial dimensions, we
pick L = − i

2

∫ (
ψ†(x)x · ∇ψ(x)− x · ∇ψ†(x)ψ(x)

)
ddx

[27, 30]; thereby, fermionic operators ψ(x) in real space
and ψ(k) in momentum space satisfy the following

scaling transformations: e−iuLψ(x)eiuL = e
d
2uψ(eux),

e−iuLψ(k)eiuL = e−
d
2uψ(e−uk). One can check that the

anti-commutation relations {ψ(x), ψ†(x′)} = δ(x−x′) in
real space and {ψ(k), ψ†(k′)} = δ(k− k′) in momentum

space are preserved under the scaling transformation. We
will sometimes abuse the terminology to call K(u) and
L themselves the disentangler and the isometry rather
than the verbose generator of disentangler and generator
of isometry.

The renormalized wavefunction is governed by the
Schrödinger equation,

i
∂

∂u
|ΨS(u)〉 = [K(u) + L]|ΨS(u)〉, (1)

where the superscript S denotes the Schrödinger picture.
In this Letter, we will focus on the interaction picture
which provides a more convenient way to look at continu-
ous entanglement renormalization. We treat L as a “free”
Hamiltonian and K(u) as an “interaction” Hamiltonian,
i.e., |ΨI(u)〉 = eiuL|ΨS(u)〉, where the superscript I de-
notes the interaction picture. Substituting this equation
into Eq. (1), we obtain

i
∂

∂u
|ΨI(u)〉 = K̂(u)|ΨI(u)〉, (2)

where K̂(u)
def
= eiuLK(u)e−iuL is the disentangler in

the interaction picture. The renormalized wavefunction
|ΨI(u)〉 at scale u can be formally written in terms of the
IR state |ΩIIR〉 ≡ |ΨI(u→ −∞)〉 as

|ΨI(u)〉 = P exp

(
−i
∫ u

−∞
K̂(u′)du′

)
|ΩIIR〉, (3)

where P is the path ordering operator. Unless other-
wise stated, we will only consider the interaction picture;
therefore, we will drop the superscript I in the rest of
this Letter.

A continuous Chern insulator model.—We begin
with a two-band continuous Chern insulator model in
two spatial dimensions [29] with Hamiltonian H =∫

d2kψ†(k)[R(k) · σ]ψ(k), where k = (kx, ky) ∈ R2,

R(k) = (kx, ky, m − k2), m > 0, k ≡ |k| =
√
k2x + k2y,

and σ = (σx, σy, σz) is a vector of Pauli matrices.
The fermionic operator ψ(k) is a two-component spinor

ψ(k) ≡
(
ψ1(k) ψ2(k)

)T
whose components satisfy

{ψ†i (k), ψj(k
′)} = δij δ(k− k′) for i, j ∈ {1, 2}.

The ground state, which has the lower band filled, is
[30]

|Ψ〉 =
∏
k

(
ukψ

†
2(k)− vkψ†1(k)

)
|vac〉, (4)

uk =
1√
Nk

((
m− k2

)
+
√

(m− k2)2 + k2
)
,

vk =
1√
Nk

(
ke−iθk

)
,

where Nk is a k-dependent normalization factor such
that |uk|2 + |vk|2 = 1, and the state |vac〉 is the vac-
uum state annihilated by ψ1,2(k). The angle θk is
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defined via kx = k cos θk and ky = k sin θk, i.e., it
is the polar angle in momentum space. The Chern
number of the bottom band of this two-band system

is C = 1
4π

∫
R2 d2k n(k) ·

(
∂n(k)
∂kx

× ∂n(k)
∂ky

)
= 1, where

n(k) ≡ R(k)
|R(k)| and where the integrand divided by two

is called the Berry curvature.

Now, we show how to obtain a scale-invariant cMERA
for this model.

Entanglement renormalization of the Chern insu-
lator.—Following the convention in Refs. [27, 30,
40], we take the Gaussian ansatz for the dis-
entangler in the Schrödinger picture, K(u) =

i
∫

d2k
[
g(k, u)ψ†1(k)ψ2(k) + g∗(k, u)ψ1(k)ψ†2(k)

]
[41].

If we require our disentangler to be scale-invariant,
then g(k, u) should not have explicit u dependence,
g(k, u) = g(k). We also take the ansatz that g(k) =
H(k)e−iθk , where H(k) is a real-valued function to
be determined. Through rewriting the disentangler
as K(u) =

∫
d2kψ†(k)[H(k) · σ]ψ(k) with H(k) =

(H(k) sin θk,−H(k) cos θk, 0), we can intuitively under-
stand its action by imagining an effective magnetic field
of strength H(k) in a clockwise direction about the origin
applied to the pseudo-spin at each momentum point. In
the interaction picture, the disentangler becomes

K̂(u) = i

∫
d2k

[
H(e−uk)e−iθkψ†1(k)ψ2(k)

+H(e−uk)eiθkψ1(k)ψ†2(k)

]
. (5)

Now, we start to renormalize the wavefunction and de-
termine the form of the disentangler. We assume that the
renormalized wavefunction at scale u can be expressed as

|Ψ(u)〉 =
∏
k

(Pk(u)ψ†2(k)−Qk(u)ψ†1(k))|vac〉, (6)

with |Pk(u)|2 + |Qk(u)|2 = 1. From Eq. (2), we get

Pk(u) = Ake
−iϕ(e−uk) +Bke

iϕ(e−uk), (7)

Qk(u) = −ie−iθk
[
Ake

−iϕ(e−uk) −Bke
iϕ(e−uk)

]
.

CoefficientsAk andBk are complex numbers with |Ak|2+
|Bk|2 = 1

2 , and ϕ(e−uk) ≡
∫∞
ke−u H (t) dt

t . At UV scale
u = 0, the wavefunction should match the ground state in
Eq. (4); at IR scale u→ −∞, we would like the renormal-

ized wavefunction to be the product state
∏

k ψ
†
1(k)|vac〉

or the product state
∏

k ψ
†
2(k)|vac〉 [27, 30, 40]. By tak-

ing Ak = − 1
2i and Bk = 1

2i , the boundary conditions can
be satisfied by requiring

H (k) =
k(m+ k2)

2 [k4 + k2(1− 2m) +m2]
. (8)

UV

IR
u=-∞

u=0kxky

FIG. 1. Berry curvature of the renormalized wavefunction in
the interaction picture at different scales u, drawn schemati-
cally in momentum space. The blue arrow corresponds to the
direction of the reversed cMERA circuit. The area contribut-
ing to the Chern number expands as one approaches the UV
scale.

Substituting Eq. (8) into Eqs. (6) and (7), we attain an
explicit form of the renormalized wavefunction,

|Ψ(u)〉 =
∏
k

1√
Nk,u

×[(
(m− k2e−2u) +

√
(m− k2e−2u)2 + k2e−2u

)
ψ†2(k)

−k e−ue−iθk ψ†1(k)

]
|vac〉, (9)

where Nk,u is a normalization factor that depends on
k and u. The Berry curvature of the renormalized
wavefunction at different u is shown schematically in
FIG. 1. The IR state is |ΩIR〉 = limu→−∞ |Ψ(u)〉 =∏

k e
−iθkψ†1(k)|vac〉, which is equal to

∏
k ψ
†
1(k)|vac〉 =∏

x ψ
†
1(x)|vac〉 up to an overall phase. Note that the

nonzero Chern number does not survive in the IR state
because the integration operation does not commute with
the limit u → −∞. However, at any finite u, the Chern
number is always one. Therefore, there is no phase tran-
sition during the entanglement renormalization process,
consistent with the results in Refs. [30, 42, 43].

To analyze the spatial structure of the disentangler, we
rewrite the expression for H (k). We first define λ+ and
λ− as the two roots of the equation x2+(1−2m)x+m2 =

0, λ± = −1+2m±
√
1−4m

2 . They are real and negative when
0 < m < 1/4. Although setting this restriction on m is
not necessary for our disentangler, we will assume it in
the following in order to assist our experimental realiza-
tion. Now, the expression H (k) can be rewritten as

H (k) =

(−1 +
√

1− 4m

4
√

1− 4m

)
k

k2 − λ+

+

(
1 +
√

1− 4m

4
√

1− 4m

)
k

k2 − λ−
. (10)

By inserting this expression into Eq. (5) and performing
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|g1i
|g2i

|e1i
|e2i

spin-orbit interaction

FIG. 2. A scheme to engineer the cMERA circuit in the in-
teraction picture. The two excited states are coupled by spin-
orbit interaction to each other and by off-resonant lasers to
the two ground states.

a Fourier transform, it can be shown that the disentan-
gler in real space decays exponentially with character-
istic length e−u/max{

√
−λ+,

√
−λ−}. Therefore, our

cMERA involves quasi-local interactions.

Experimental realization of the cMERA circuit.—We
propose a way to realize our reversed cMERA circuit to
prepare a Chern insulator state in an optical lattice with
neutral 171Yb, which are fermionic atoms with two outer
electrons. From now on, we will drop the word “reversed”
for our cMERA circuit when the context is clear. Recall
that the cMERA circuit starts with an initial IR state.
As discussed above, the IR state at u → −∞ does not
have the correct Chern number; therefore, we start from
a near-IR state with large negative u. In addition, the
cMERA circuit is only valid on a lattice when the contin-
uum approximation holds. Therefore, throughout the cir-
cuit, the physical length scale e−u/max{

√
−λ+,

√
−λ−}

should be significantly larger than the lattice spacing. At
the same time, this length scale should be significantly
smaller than the total size of the lattice so that boundary
effects do not dominate the bulk physics. Going forward,
we begin with a near-IR state and use our cMERA cir-
cuit to obtain the UV state without ever violating these
requirements.

Here, we assume that we already have an initial near-
IR state waiting to be inserted into the cMERA circuit.
Since, in finite-size systems, the Berry curvature is con-
centrated on a few discrete momentum points near k = 0,
the preparation of this near-IR state should be fast if we
can individually create states at each point in momen-
tum space. In the Supplemental Material, we provide
one possible method for generating this initial state [44].

We now present the cMERA circuit engineering
scheme (see Supplemental Material for details). We use
|g1〉 and |g2〉 as shorthand notations for the two sta-
ble hyperfine ground states |F = 1/2, mF = −1/2〉 and
|F = 1/2, mF = 1/2〉 in 1S0; these form the basis of our

spinor ψ(k) ≡
(
ψ1(k) ψ2(k)

)T
. We find that if we have

two metastable excited states |e1〉 and |e2〉 (e.g. from the
3P manifold) with quadratic dispersions coupled by spin-
orbit interaction and couple them off-resonantly to the
respective ground states as shown in FIG. 2, then the
disentangler in the interaction picture can be engineered.
Intuitively, the spin-orbit interaction allows us to gener-
ate a momentum-dependent effective magnetic field for
Eq. (5), whereas the off-resonant couplings to quadratic
dispersive bands induce quadratic terms in the denom-
inators of Eq. (10). To accomplish this, we utilize the
scheme detailed in Refs. [45–48] to create two dressed
excited states coupled by spin-orbit interaction. How-
ever, as the two dressed states are linear combinations of
bare excited states, the dressed states do not have good
quantum numbers to have clear selection rules to forbid
the transitions |g1〉 ←→ |e2〉 and |g2〉 ←→ |e1〉. Never-
theless, by carefully choosing the driving fields to couple
ground states to the bare excited states, we can create
interferences to generate synthetic selection rules. By
varying the laser parameters as the circuit progresses, we
can engineer the disentangler in the interaction picture.

When the UV state is generated by the cMERA circuit,
one can then use the experimental techniques introduced
in Refs. [49–51] to measure the Chern number and the
Berry curvature.

Discussion.—In this work, we found a quasi-local
cMERA whose fixed-point wavefunction is a Chern in-
sulator. This is a novel and unexpected way to rep-
resent systems with chiral topological order. We also
demonstrate that our quasi-local quantum circuit can be
realized experimentally in a cold atom system, despite
the common intuition that a quantum circuit should be
strictly local to allow easier implementation.

In our realization, we only explored one possibility
to engineer spin-orbit coupling, but it may be possible
to engineer the interaction in other ways, such as using
magnetic fields on a chip [52] or microwaves [53]. Other
alkaline-earth atoms could also provide promising experi-
mental platforms. Although our experimental realization
took place in the interaction picture, one could in prin-
ciple instead use the Schrödinger picture for cMERA,
where the lattice constant must continuously contract in
an experiment [54, 55]. By using our cMERA circuit, the
Chern insulator bulk wavefunction can be prepared and
detected. We leave it for future work to study the edge
physics, for which one also needs to apply some unitaries
on the edge during the initial state preparation process
and to carefully design the corresponding disentanglers;
otherwise, the edge physics might not be preserved under
the bulk unitary process [42, 43, 56].

It is also interesting that the Chern insulator ground
state is a fixed point of our cMERA with finite correla-
tion length. This observation seems to contradict the
usual intuition that the fixed point correlation length
must be zero or infinity, as the correlation length must
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decrease under rescaling of each strictly local RG step in
real space. However, since our cMERA involves contin-
uous time evolution and quasi-local interactions, it has
potential to restore the original correlation length after
a finite time evolution. The no-go theorems in Refs. [23–
26] are similarly circumvented by a cMERA construction.
Our work suggests that quasi-local RG transformations
are a more powerful framework than strictly local RG
transformations. It also might shed light on some of the
key properties of MERA-like formalisms for a wide range
of chiral topological states. In the future, we hope to
extend the methods of this Letter to fractional quantum
Hall states.

We are grateful to Bela Bauer, Yu-Ting Chen, Ze-
Pei Cian, Ignacio Cirac, Glen Evenbly, Zhexuan Gong,
Norbert Schuch, Brian Swingle, Tsz-Chun Tsui, Bray-
den Ware, and Xueda Wen for helpful discussions. This
project is supported by the AFOSR, NSF QIS, ARL
CDQI, ARO MURI, ARO, NSF PFC at JQI, and NSF
Ideas Lab. S.K.C. partially completed this work during
his participation in the long-term workshop “Entangle-
ment in Quantum Systems” held at the Galileo Galilei In-
stitute for Theoretical Physics as well as “Boulder School
2018: Quantum Information,” which is supported by the
National Science Foundation and the University of Col-
orado. He is also funded by the ACRI fellowship under
the Young Investigator Training Program 2017. G.Z. is
also supported by ARO-MURI, YIP-ONR and NSF CA-
REER (DMR431753240). J.R.G. acknowledges support
from the NIST NRC Research Postdoctoral Associate-
ship Award. Z.E. is supported in part by the ARCS
Foundation. I.B.S. and A.V.C. acknowledge the addi-
tional support of the AFOSR’s Quantum Matter MURI
and NIST.
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