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We study the effect of correlations in generation times on the dynamics of population growth
of microorganisms. We show that any non-zero correlation that is due to cell-size regulation, no
matter how small, induces long-term oscillations in the population growth rate. The population
only reaches its steady state when we include the often-neglected variability in the growth rates of
individual cells. We discover that the relaxation time scale of the population to its steady state is
determined by the distribution of single-cell growth rates and is surprisingly independent of details
of the division process such as the noise in the timing of division and the mechanism of cell-size
regulation. We validate the predictions of our model using existing experimental data and propose
an experimental method to measure single-cell growth variability by observing how long it takes for
the population to reach its steady state or balanced growth.

Most of us have first cousins that are more or less
our age, but the ages of our more distant cousins are
more broadly distributed. The difference arises due to
the larger number of generations since our last common
ancestor with our more distant cousins. The noise in the
generation times adds up over generations, giving rise to
wider distributions of ages. The number of generations it
takes for the descendants of an individual to sufficiently
mix in age to be statistically indistinguishable from the
rest of the population is inversely related to the variabil-
ity in the generation times [1].

Here, we show that this problem is very different in
the context of single-cellular organisms due to the in-
teraction between cell size and generation time. Many
single-cellular organisms grow exponentially in size be-
fore division [2–9]. If a cell grows for a longer time than
expected before it divides, its daughter cells will be larger
at birth and have to compensate for their sizes by divid-
ing slightly earlier than expected. Otherwise, the noise
in the generation times would accumulate over genera-
tions in the size of the cells, leading to extremely large
cells [10]. This compensation for the error in the genera-
tion times not only suppresses the accumulation of noise
in cell sizes, but also prevents the accumulation of noise
in the distribution of ages over generations and keeps the
division times synchronized (see Fig. 1). Given this ob-
servation, it is natural to ask what sets the time scale
for a population of microorganisms to desynchronize and
reach its steady state.

In this Letter, we study the dynamics of population
growth of microorganisms starting from a single cell. We
show that the correlations induced by the cell-size con-
trol mechanism, no matter how small, significantly de-
lay the relaxation of the population to its steady state.
We observe transient oscillations in the growth rate of
the number of cells in the population. These oscilla-
tions are sustained by the mother-daughter correlations
and decay due to the competing effect of small varia-
tions in the single-cell growth rates. We discover that
the single-cell growth rate distribution completely deter-

mines the timescale for the relaxation of the population
to its steady state as well as the steady state population
growth rate irrespective of the details of cell division pro-
cess and cell-size control mechanism.

The distribution of single-cell growth rates is a ma-
jor evolutionary trait contributing to the fitness of an
organism [11–13]. It has been recently shown that the
steady-state growth rate of a population can be found
from the distribution of single-cell growth rates [14, 15].
Since the population growth rate is easier to measure
than the single-cell growth rate distribution, it would be
desirable to go in the reverse direction. We provide a
relationship between the decay rate of the oscillations in
the growth rate of the population and the distribution
of single-cell growth rates. This relationship can be used
in combination with steady-state results to estimate the
growth rate distribution by observing the growth of a
population as it relaxes to its steady state. We validate
this prediction using the existing single cells data from
the “mother machine” experiment from Ref. [2].
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FIG. 1. Lineage tree of populations starting from a single
cell. (left) In the absence of cell size control, the division
times (circular markers) become less synchronized over time
due to the accumulation of noise in their generation times.
(right) The division times of cells with cell size control stay
synchronized due to correlations in the generation times of
mother and daughter cells.
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We use a model introduced in Ref. [10], where cells
grow exponentially in size with growth rate κ. Each cell
with birth size vb attempts to divide after its size reaches
a target size vd = f(vb). We assume a time additive1

noise ξ in the division process with zero mean and vari-
ance σ2

ξ such that the generation time τ is given by

τ =
1

κ
ln

(
vd
vb

)
+ ξ. (1)

The function f(vb) determines the cell-size control mech-
anism. In the presence of cell-size control, the sequence of
initial sizes, vn+1

b = f(vnb )/2 has a fixed point ∆, and the
distribution of initial cell sizes is sharply peaked around
∆. Therefore, all reasonable functions f that are equiv-
alent to linear order near ∆ describe approximately the
same dynamics. The one parameter family of functions
f(vb) = 2∆αv1−αb , with 0 ≤ α ≤ 1 qualitatively captures
the full range of behavior for this model and interpolates
between two extremes [10, 16]. The case α = 0, known
as the timer model, has no cell size control where cells
attempt to divide after a period of time independent of
their size. Successive generation times in this case are
uncorrelated with variance σ2

ξ while the variance of the
cell size distribution is known to diverge at long time [10].
The case α = 1 is known as the sizer model where cells
attempt to divide when they reach the size 2∆ indepen-
dent of their history [17]. Experimental data support a
value of α closer to 1/2 for many organisms, where cells
attempt to divide when they approximately add a con-
stant size ∆ to their original size [3, 6, 9, 10, 18–23].
For α > 0, the generation times of mother and daughter
cells are correlated with Pearson correlation coefficient
CMD = −α/2 [14], and variance of the generation time
is given by 2σ2

ξ/(2 − α).
For a population starting from a single cell, the timing

of the nth division, tn, is given by

tn =

n∑
i=1

τi = nτ̄ + δtn, (2)

where τ̄ = ln(2)/κ is the cell-size doubling time and δtns
are random variables with probability density gn(δt). We
have derived the following recursive relationship for gn
(See the Supplemental Material (SM) [24] for the deriva-
tion)

gn(δt) =

∫
gn−1(δt− δτ)fξ

(
(1 − α)δτ + αδt

)
dδτ, (3)

where fξ is the probability density function of ξ. The
expected value of the rate of change in the total number

1 Simulations results (not shown here) indicate that the dynamics
is not affected if size-additive noise is used instead.

FIG. 2. Log-scale plot of the expected value of the rate of
change of the number of cells in a population starting with a
single cell, calculated analytically (red solid curve) and com-
pared with simulation (blue circles). The rate of change of
the number of cells can be written as the sum of the division
rates (parabolic dashed lines) of all generations (see Eq. (3)).
(Top) In the absence of cell size control, α = 0, the distribu-
tion of division times of higher generations get wider and start
to overlap, damping out the oscillations in the growth rate.
(Bottom) In the presence of even a small cell size control,
α = 0.1, the distribution of successive division times quickly
approach a steady state distribution with a finite variance
(see Eq. (5)) leading to the persistence of oscillations in the
growth of the population. The distribution of timing of the
7th and 18th generations are highlighted in both cases for
comparison.

of cells in the population can be written as the sum of
the division rates (number of cells produced in each gen-
eration multiplied by the division time distribution) over
all generations

dN

dt
=

∞∑
n=1

2ngn(t− nτ̄). (4)

For α = 0, the integral in Eq. (3) becomes a convolution
leading to the accumulation of the noise at each genera-
tion. For 0 < α ≤ 1, the variance of the division time at
the nth generation is found using Eq. (3) to be

var(tn) = σ2
ξ

1 − (1 − α)2n

α(2 − α)
. (5)

For α > 0, the successive division time distributions ap-
proach a limiting distribution with the finite variance
σ2
ξ/α(2 − α). The negative correlations induced by cell-

size control2 prevent the cells from desynchronizing, and

2 Negative correlations between the generation times of mother
and daughter cells that are not due to cell size control are not
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FIG. 3. Oscillations in the population growth rate decay ex-
ponentially due to the stochasticity in growth rates of individ-
ual cells. The solid red line is the exponential fit used in Fig. 4,
the horizontal dashed red line is the steady-state value of the
population growth rate, and vertical dashed lines are the ex-
pected values of successive division times where the popu-
lation growth rate peaks. Simulation parameters: α = 0.5,
σξ = 0.1, κ̄ = ln(2), and σκ = 0.07κ̄.

the change in the population is characterized by periodic
bursts of divisions at regular intervals. Here, we have
made no assumption about the distribution of the noise
ξ in the timing of the division process except that it has a
finite variance. For a more concrete example, let us con-
sider a Gaussian form for fξ

3. In this case, using Eq. (3),
we are able to show that the gns are also Gaussian dis-
tributed with the variance given in Eq. (5). Figure 2
shows the comparison of these analytical results with the
numerical simulations for two cases of no cell size control,
α = 0, and a small cell size control, α = 0.1.

In practice, a population of uncoupled cells cannot
maintain synchronized division for infinite time and the
oscillations in the growth rates have to decay as the pop-
ulation relaxes to its steady-state age distribution. In or-
der to capture this relaxation and estimate its time scale,
we need to include multiple sources of noise in our model.
There are at least two other sources of stochasticity in the
growth and division of cells: (1) small variability in the
growth rate of the individual cells from one generation to
another and (2) random asymmetry in the division plane
of otherwise symmetrically dividing cells. In many sym-
metrically dividing organisms, the coefficient of variation
(CV, the ratio of the standard deviation to the mean) of
the single-cell growth rate, κ, is significantly larger than
that of the division ratio (DR, the ratio of the size of the
daughter cell to that of its mother cell). For example in
E. coli, the CV of DR is between 0.02 and 0.06 [3, 9, 25]
while the CV of single-cell growth rate is reported to be

sufficient to sustain these oscillations. This can be shown by a
model in which τi+1 = τ̄−α(τi−τ̄)+ξi independent of the size of
the cell. In this model, for all values of α > 0, the accumulation
of the noise is only partially suppressed and the oscillations decay
at long time.

3 We assume the variance is small enough so that τ does not be-
come negative.

between 0.06 and 0.20 depending on the growth condi-
tion [14, 26–28]. Here we consider organisms in which
the stochasticity in the DR can be neglected. The ex-
tension of our results with stochastic DR is studied in
SM [24]. Since κ has a narrow symmetric distribution
around its mean κ̄ [28], its distribution can be estimated
as a Gaussian with some variance σ2

κ. Furthermore, un-
like the correlation in the generation times, the corre-
lation between the growth rate of mother and daughter
cells can be negligible depending on the organism and the
growth condition [2, 29] and are ignored in this model.

Figure 3 shows the population growth rate, k ≡
d ln(N)/dt, in a simulation of the model described above,
where now the growth rate of each cell is independently
chosen from a Gaussian distribution with the mean κ̄ =
ln(2) and CV of 0.07 (time is measured in the unit of
τ̄ = ln(2)/κ̄). We observe that oscillations in the popu-
lation growth rate decay exponentially at long time until
the growth rate approaches a steady state value. This
value is given by the unique k satisfying the equation〈(

1

2

)k/κ〉
κ

≡
∫ ∞
0

ρ(κ) 2−k/κdκ =
1

2
(6)

where ρ(κ) is the distribution of single-cell growth rates
(see SM [24] for derivation). In Eq. (6), ρ is the distribu-
tion along a lineage (or equivalently over the entire popu-
lation tree) which is distinct from the instantaneous pop-
ulation distribution [14, 30, 31]. Since the slow-growing
cells have longer generation times, they are overrepre-
sented in the population at any given time, and there-
fore, the population growth rate is slightly smaller than
κ̄ 4. For a narrow distribution, the population growth
rate can be approximated in terms of κ̄ and σκ [15]

k ≈ κ̄−
(

1 − ln(2)

2

)
σ2
κ

κ̄
. (7)

We have a total of five independent variables in our
model: α, σξ, σκ, ∆, and τ̄ = ln(2)/κ̄. Time and size
can be measured in units of τ̄ and ∆, respectively. Fig-
ure 4 shows the dependence of the rate of decay of the
oscillations of the population growth rate on all of the
remaining model parameters α, σξ, and σκ. Surprisingly,
this decay rate is completely independent of the mech-
anism of cell size control, α (with the exception of the
single point α = 0), and is also independent of the noise
in the timing of the division process, σξ. It is propor-
tional to the variance of the single-cell growth rate, σ2

κ.

4 This argument fails if the growth rates of mother and daughter
cells are highly correlated, in which case the fast-growing cells
reproduce faster and can potentially compensate for their under-
representation in the population depending on the strength of
the correlation. See Ref. [15] for a more detailed discussion.
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FIG. 4. Simulation results for the decay rate of oscillations
in the population growth rate shown as functions of σκ, σξ,
and α: (top) decay rate increases linearly with the variance
of single-cell growth rate distribution, σ2

κ (the red solid line
is a parabolic fit; inset is the log-log plot with linear fit);
(middle) the noise in the division process has no effect on the
damping of the oscillations in the population growth rate;
(bottom) the mechanism for cell-size control does not affect
the decay rate either as long as there is a nonzero cell-size
control, α 6= 0. Simulation parameters: (top) α = 0.5 and
σξ = 0.1τ̄ , (middle) α = 0.5 and σκ = 0.07κ̄, and (bottom)
σξ = 0.1τ̄ and σκ = 0.07κ̄.

As seen in Fig. 3, for a realistic value of single-cell
growth rate variability, the oscillations in the population
growth rate can be observed for as long as 40 genera-
tions. A test tube culture of E. coli starting from a single
cell begins to saturate after about 30 generations (∼ 109

cells/ml) making these oscillations visible at any time
during the exponential growth phase5. This allows the
measurement of both the steady state population growth
rate k and the decay rate λ. From Fig. 4, the decay rate λ
is approximately given by λ ≈ 29σ2

κ/κ̄ which combined
with Eq. (7) provides both the mean and the variance
of single-cell growth rates, κ̄ and σ2

κ. This method for
measuring the variability in single-cell growth rates is
significantly easier and less biased than the direct single
cell measurement.

5 These oscillations are hidden to the optical density measurements
which provide a proxy for the total mass of the population. Cell
counting techniques should be used instead to detect these oscil-
lations.

To validate this method, we use existing single-
cell data from the “mother machine” experiment from
Ref. [2]. Unlike the proposed experiment where all the
cells share a common ancestor at time zero, this exper-
iment provides an ensemble of unrelated single cell lin-
eages. However, there is a proper shift of the time frame
for each lineage after which at long time, the division
times of all lineages become synchronized as though they
were descendants of the same cell (see SM [24] for de-
tails). Figure 5 shows the exponential decay of the os-
cillation in the histogram of the division times across all
lineages after proper synchronization. The inferred single
cell growth rate variability σκ shows excellent agreement
with the direct measurement of this quantity.

Conclusion : For nearly a century, microbiologists have
been concerned with the relationship between statistical
observables of single cells and the properties of their pop-
ulations [22, 32–37]. Recent advances in single-cell track-
ing technology has lead to a surge of renewed interest in
this field [2, 38–43]. On one hand, the details of the
mechanism of cell size control that allows populations to
maintain a narrow distribution of cell sizes [35, 44–51]
has become the topic of an intense debate over the past
few years [3, 6, 10, 16, 27, 52–56]. On the other hand, the
relationship between the stochasticity in the generation
times of microorganisms and the growth of their popu-
lations has gained recent attention [1, 28, 30, 31, 57–59].
There are two distinct sources of stochasticity in genera-
tion times: the noise in the cellular growth and the noise
in the division process. We claim that only the former
plays a role in the growth and relaxation rates of the pop-
ulation, while cell size control is precisely the process of
canceling out the latter over the course of a few genera-
tions. As a result, both the time it takes for a population
to reach its steady state and the steady-state population
growth rate are only affected by the portion of noise in
the generation times that is due to the variability in the
single-cell growth rates and not the stochasticity in the
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FIG. 5. Histogram of division times in a synchronized en-
semble of single cell lineages from Ref. [2] (see SM [24] for
details). The decay rate of these oscillations is measure to be
λ ≈ (0.27± 0.03) hour−1 which determines the variability in
single-cell growth rates of σκ = (0.130± 0.007) hour−1 com-
pared to direct measurement of the sample standard deviation
σκ = 0.135 hour−1.
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timing of cell division. A practical consequence of this re-
sult is that the distribution of single-cell growth rates can
be estimated by observing how long it takes for a popu-
lation starting from a single cell to reach its steady state.
Analysis of single cells data from the “mother machine”
experiment shows excellent quantitative agreement with
this prediction.
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