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Topological quantum and classical materials can exhibit robust properties that are protected
against disorder, for example for noninteracting particles and linear waves. Here, we demonstrate
how to construct topologically protected states that arise from the combination of strong inter-
actions and thermal fluctuations inherent to soft materials or miniaturized mechanical structures.
Specifically, we consider fluctuating lines under tension (e.g., polymer or vortex lines), subject to
a class of spatially modulated substrate potentials. At equilibrium, the lines acquire a collective
tilt proportional to an integer topological invariant called the Chern number. This quantized tilt is
robust against substrate disorder, as verified by classical Langevin dynamics simulations. This ro-
bustness arises because excitations in this system of thermally fluctuating lines are gapped by virtue
of inter-line interactions. We establish the topological underpinning of this pattern via a mapping
that we develop between the interacting-lines system and a hitherto unexplored generalization of
Thouless pumping to imaginary time. Our work points to a new class of classical topological phe-
nomena in which the topological signature manifests itself in a structural property observed at finite
temperature rather than a transport measurement.

Topological mechanics [1–6] and optics [7, 8] typically
focus on systems of linear waves assuming that mode in-
teractions and finite-temperature effects can be ignored
in deriving the relevant topological invariants and corre-
sponding physical observables. However, these assump-
tions break-down when structures are miniaturized down
to the micron scale. The resulting interplay between
large-amplitude thermal displacements and mechanical
constraints arises in contexts ranging from molecular
robotics to soft materials. In this Letter, we show that
thermal fluctuations and interactions, far from being a
hindrance, can actually create topologically protected
states by acting in tandem. We provide a specific illustra-
tion of this mechanism in thermally fluctuating and in-
teracting lines (or chains) under tension whose statistics
describe such diverse systems as directed polymers [9–12]
and vortex lines in superconductors [13, 14].

Consider, as an example, flexible lines confined within
a thin layer parallel to the xy–plane and experiencing
a tension τ along the direction y (Fig. 1a). The lines
undergo thermal fluctuations along the x direction but
are assumed to be inextensible along the longitudinal di-
rection. Spatial modulations in the polymer-substrate
interaction potential influence the line density profile
at equilibrium (Fig. 1b). Previous studies of directed-
line systems have focused on the effect of localized or
randomly-distributed constraining potentials on line con-
formations [13, 15]. By contrast, we characterize the pat-
terns induced by periodic substrate potentials. Although
the underlying principle is more general, we focus here
on the specific form for the potential energy per unit

length [16, 17]
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which combines a y-independent sinusoidal component
(first term) with a mixed one (second term) which slides
along the x-direction as y advances (Fig. 1c). The period
in the x–direction is given by a divided by the greatest
common divisor of the integers p and q, and in the y–
direction the period is denoted by λ. (V1 and V2 set the
strength of the substrate interaction per unit length of
the chains.) The form of the potential in Eq. (1) is mo-
tivated by an analogy between the system of fluctuating
lines and the so-called Thouless charge pump [18], which
was recently realized and extended in ultracold atom ex-
periments [19–21]. As we shall see, the formalism of the
Thouless pump needs to be extended to account for the
thermally fluctuating classical systems considered here.

A quantum Thouless pump describes the adiabatic
flow of charge in a one-dimensional electron gas subject
to a potential that varies periodically in both space and
time. When the electrons populate an energy band com-
pletely, the number of electrons transported in one cycle
is quantized to an integer-valued topological invariant of
the filled band—the Chern number, C [22]. The static
potential in Eq. 1 can be viewed as a time-dependent po-
tential with the spatial coordinate y interpreted as the
time coordinate. For electrons experiencing this poten-
tial, the Chern numbers are determined by the integers
p and q [23] and can be nonzero, leading to charge flow.
For the potential in Fig. 1 with (p, q) = (1, 2), the lowest
band has C = 1. Hence, under a filling density of one
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FIG. 1. Directed lines and doubly-periodic substrate
potentials. (a) Schematic of single directed line in a poten-
tial described by Eq. (1) with (p, q) = (1, 2), y-axis period
λ, and x-axis period a. (b) Substrate potential (blue curves)
and the theoretical density distribution [from Eq. (2), yel-
low curves] for a single chain at three y-positions indicated
by the dotted lines. (c) The compound potential V (x, y)
[blue] combines two components, static (gray) with wave-
length a/q = a/2 and sliding (red) with wavelength a/p = a.
(d) Illustration of a Thouless pump for a potential with
(p, q) = (1, 2), corresponding to C = 1. Under a filling den-
sity of one electron per lattice constant, each electron is ex-
ponentially localized to a unique unit cell. The drift of one
such localized wavefunction over an adiabatic cycle is shown
schematically; it is exactly quantized to C steps of lattice size
a over each period λ of the potential variation along the y di-
rection. The tunneling of probability weight between adjacent
potential minima during the adiabatic evolution, indicated by
the dashed arrow, is crucial for the shift. (e) Same as (d) for
a potential with (p, q) = (2, 3) for which C = −1.

electron per lattice period a, the electrons are shifted
to the right by one lattice period over one time cycle
λ, see Fig. 1d. By contrast, Fig. 1e illustrates the case
(p, q) = (2, 3), for which C = −1. In this case of so-
called “anomalous” pumping [17], the electrons flow to
the left even though the potential is still sliding to the
right. As long as the gap between occupied and unoc-
cupied bands remains open, the topological nature of C
insures that the charge flow is robust against electron
interactions and disorder in the potential V (x, y) [24].

Can we formulate a thermal generalization of Thouless
pumping and use it to engineer topological soft materi-
als? Here, we show that directed fluctuating lines can or-
der into tilted patterns that mimic the spacetime paths
traced by the quantum particles in Fig. 1d–e. Several
studies have shown that the conformations of a thermally
fluctuating chain can be mapped to the paths of a quan-
tum particle [9–12, 25, 26]. However, Thouless pump-
ing introduces a new facet to this mapping: the require-
ment of a gapped phase. For electrons, the gapped phase
is accomplished by filling a band, which requires Pauli
exclusion—a distinctive feature of fermions. To recreate
exclusion effects in classical fluctuating lines, we impose
a requirement that lines cannot cross each other. Such a
constraint could be the result of simple steric exclusion
between lines made of freely-jointed rigid elements, or
of screened repulsive interactions that act at very short
distances. Remarkably, the noncrossing constraint repro-
duces the effects of Fermi statistics in the directed line
system [9], allowing us to “fill” bands by tuning the num-
ber of chains per lattice constant along the x-direction.

To test whether interacting, thermal chains can
replicate topological charge pumping, we have con-
ducted Langevin dynamics simulations [27] of chains of
monomers interacting with each other via a harmonic
contact repulsion below a cutoff separation and, in addi-
tion, interacting with the substrate according to Eq. (1)
with V1a and V2a of the same order as the thermal energy
kBT . We emulate filling of the lowest band by includ-
ing lines at a density of one chain per lattice constant a.
When parameters (p, q) = (1, 2) are chosen so that C = 1,
the chains acquire a collective tilt to the right (Fig. 2a)
which is also apparent in the equilibrium density pro-
file (Fig. 2b). Probability distributions of the monomer
x-positions at different values of y show that the shift
in average chain position advances to the right by one
lattice constant per cycle, matching the quantization ex-
pected from the Chern number to within 1% accuracy
(Figs. 2c–d).

In contrast to the quantum pump, the topological tilt
of the lines is a direct consequence of many-body interac-
tions between the chains: a single chain on an otherwise
empty lattice diffuses freely through the system and, on
average, does not tilt (see Supplemental Movies 1–3 [27]).
Moreover, thermal fluctuations do not destroy the topo-
logical state, but rather are crucial for creating the tilt
via a series of “thermal tunneling” events visible in the
density profiles of Fig. 2c (see also Supplemental Figure
2 [27]). These events are analogous to the quantum tun-
neling in Fig. 1.

The non-vanishing slope resulting whenever C 6= 0 can-
not be intuited from superficial aspects of the substrate
potential or from the (real-time) dynamics of classical
particles under the same potential (see Supplemental Fig-
ure 2 [27] for a comparison of the classical path to the true
contour at thermal equilibrium, which highlights the role



3

0 1 2 3

y/λ

0

1

2

3

x
cm
/
a

1 3y/λ
0.9

1.0

∆
x
/
a

0 1 2 3

y/λ

0

-1

-2

-3

x
cm
/
a

1 3y/λ

0.95

1.00

∆
x
/
a

a b

e

d

-1 0 1 2 3 4

x/a

P
D

F
-3 -2 -1 0 1

x/a
P
D

F

C = 1

C = –1

1

1

−1

1

λ

λ

c

f g h

FIG. 2. Topological tilt of directed line conformations. a, Snapshot of a molecular dynamics simulation [27] of ten
noncrossing directed lines experiencing the substrate potential from Fig. 2a with C = 1 under commensurate filling (one chain
per unit cell of the potential along the x direction). b, Equilibrium monomer density distribution, and numerically-computed
scattering intensity profile (inset; see Methods). c, Probability distribution of monomer x-position for a subset of monomers
along the length of the chains. Data from different chains are aggregated by first shifting the pth chain by an amount pa
along x, where p ∈ {0, ..., 9} indexes the chains in order from left to right. d, Centre of mass computed from the probability
distributions in c. The inset shows the shift over one period, xcm(y) − xcm(y − λ), which agrees with the prediction of C = 1
away from the line ends. e–h, Same as a–d for the potential from Fig. 2b with C = −1. The lines display an anomalous tilt
to the left, even though the potential slides to the right with increasing y.

of the thermal tunneling events in producing the tilt).
For instance, Fig. 2e–h shows the case (p, q) = (2, 3),
for which C = −1. Surprisingly, the lines tilt to the left
even though the sliding part of the potential, given by
the last term in Eq. (1), has the positive slope a/(λp)
which by itself would suggest a tilt to the right. Note
that the topologically distinct left- and right-leaning con-
figurations can be differentiated by their diffraction pat-
terns (Figs. 2b and 2f, insets), suggesting a scattering
experiment that would directly measure the underlying
topological index.

To rigorously establish the topological origin of the
observed tilt, we turn to the aforementioned mathe-
matical correspondence between quantum particles and
thermally fluctuating lines[9–12, 25, 26, 34–36]. This
quantum-classical correspondence stems from the formal
similarity between the Schrödinger equation and the dif-
fusion equation describing the chain statistics:

∂yΨ =
kBT

2τ
∂2xΨ− 1

kBT
VΨ ≡ HΨ. (2)

Interpreted using the directed line language, Eq. (2) de-
scribes the (real) probability distribution Ψ(x, y) of chain
location x at distance y from the constrained end at
y = 0, given the initial distribution Ψ(x, 0). [The exter-
nal tension prevents directed chains from doubling back
on themselves, which means that the instantaneous chain
configurations are described by single-valued functions
x(y).] On the other hand, upon equating y with it and
kBT with ~, Eq. (2) describes the evolution of the (com-
plex) wavefunction Ψ(x, t) for a particle of mass τ in the
time-dependent potential V (x, t). The transformation to
imaginary time is a key aspect of our proposal in two
ways. First, it guarantees that the solutions to Eq. (2)
for long chains are described by the ground-state wave-
function of the analogous quantum system [27]. Below we
exploit this condition, known as ground-state dominance,
to generate a gapped state. Going to imaginary time also
turns wavelike Bloch eigenstates into eigenstates that de-
cay with propagation, and thus requires an extension of
the standard formalism of Thouless pumping beyond the
quantum case which we perform later on.
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Inter-line interactions, together with ground-state
dominance, can give rise to gapped phases. To see this,
consider the y-evolution of the joint probability distribu-
tion of x-positions {x0(y), x1(y), ..., xN (y)} of N chains
in a y-independent potential V (x), such as the potential
in Eq. (1) when V2 = 0. This many-body probability is
described via the exchange-symmetric eigenstates of the
effective Hamiltonian H in Eq. (2), augmented by a pair
interaction term of the form (kBT )−1

∑
i<j Vp(xi − xj).

These (bosonic) many-body eigenstates may be challeng-
ing to describe. However, a tremendous simplification
exists for non-crossing directed lines, for which the pair
potential is infinitely large when the positions of two lines
coincide at any y and is zero otherwise: Vp = cδ(xi−xj),
c → ∞. In this case, there is a one-to-one mapping be-
tween the requisite exchange-symmetric line eigenstates
and the many-body wavefunctions of N noninteracting
fermions confined to the x–axis and experiencing the
same substrate potential V (x) [9, 37]. In particular, if the
number of lines is equal to the number of lattice periods,
the ground state is obtained by filling up the lowest band
entirely. This trivial electronic insulator in the fermion
picture describes a Mott insulator in the fluctuating-line
picture [27]: a state in which excitations are gapped by
virtue of interactions. Up to an overall normalization,
the many-body joint probability distribution of the line
system ΨP

0 is then equal to the absolute value of the
fermionic ground state ΨF

0 [9, 12, 37].
When this gapped state is subjected to an additional

y-dependent potential, such as the V2 term in Eq. (1),
the probability distributions are modulated along the
chain length. As long as the excitation gap remains
open throughout, time-dependent perturbation theory
[adapted to the imaginary-time evolution of Eq. (2)] can
be used to evaluate the adiabatic change in the densi-
ties of the lines along the y-direction. As we show in the
Supplemental Information [27], the instantaneous prob-
ability current across the system can be expressed as
J(y) = 1

L∂y〈X〉, where crucially 〈X〉 depends only on
the square modulus of the ground-state wavefunction.
As a result, the density current is unchanged by the line-
fermion mapping ΨP

0 = |ΨF
0 | and by the transformation

to imaginary time. The shift in the center of mass of the
chains over one cycle corresponds exactly to the net shift
of electrons belonging to the filled band in the Thouless
pump [18, 24],

〈∆x〉λ
a

=
1

a

∫ λ

0

J(y) dy =
1

2π

∫ λ

0

dy

∫ 2π
a

0

dkF(y, k) ≡ C,

(3)
where F(y, k) = i(〈∂yuk(y)|∂kuk(y)〉 − c.c.) is the Berry
curvature computed using the Bloch eigenstates |uk(y)〉
of the lowest band of the Hamiltonian in Eq. (2) with the
periodic potential V (x, y) evaluated at a fixed y and C is
the Chern number.

Equation (3) establishes the topological origin of the

FIG. 3. The line tilt is robust against disorder. a,
Example of a substrate potential with C = 1 from Fig. 2a,
with random disorder added. b, Equilibrium monomer den-
sity distribution for potential in a under commensurate fill-
ing. c, Aggregated probability density function of monomer
x-positions. Although the density profiles of individual chains
show deviations, the aggregated profile maintains the quan-
tized tilt. d, Tilt as measured in simulations for increasing
disorder added to the substrate interaction for the potentials
studied in Fig. 2. Each point represents an average over ten
realizations of random disorder; the error bars represent esti-
mated standard deviations. Triangles and squares correspond
to underlying periodic potentials with Chern numbers C = 1
and −1 respectively, with nd additional modes with random
amplitude and phase added on. The quantized tilt is pre-
served until the disorder strength σd becomes comparable to
the excitation gap Eg.

tilt observed in Fig. 2. The nontrivial mapping between
the directed-line and the electronic systems is a physi-
cal consequence of two features. First, adiabatic evolu-
tion is determined solely by changes in the instantaneous
eigenstates of H when the parameter y is changed, and
the form of H is preserved exactly on both sides of the
mapping. Second, while the Berry curvature is a prop-
erty of the complex eigenstates of the Fourier-transformed
Hamiltonian, the Chern number (i.e., integrated Berry
curvature) describes the real -valued shift in the center of
mass of the directed-line probability distribution. Hence,
the tilt angle is a physical observable proportional to the
Chern number which is analogous to the quantized charge
transport of the electronic system.
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An important property of topological adiabatic pumps
is their robustness against disorder: since the shift in cen-
tres of mass of the single-particle states is associated with
a topological index, it is unchanged by disorder in the
substrate potential as long as the excitation gap between
the lowest and higher bands does not close [24]. To test
the robustness of the tilt, we add a random noise Vd(x, y)
to the substrate potential (implemented as a superposi-
tion of nd sine functions with random amplitudes and
phases, see Methods). Figs. 3a–b show a substrate po-
tential with added disorder, and the corresponding equi-
librium monomer density. The density profile in Fig. 3b
looks substantially different from its crystalline counter-
part in Fig. 2b. In the absence of disorder, the quantized
collective shift of all the chains translated to a quantized
tilt in the contour of each individual chain; this is no
longer true when disorder is present. Nevertheless, the
aggregated tilt (Fig. 3c) shows a striking regularity. The
measured slope of the equilibrium directed-line conforma-
tions over one period (Fig. 3d) remains quantized by the
Chern number until the disorder strength (the standard
deviation σd of the disorder potential) becomes compa-
rable to the gap Eg between the occupied band and the
next-highest band in the spectrum of V (x, y).

The topological patterning is also robust against gen-
eral interactions among chains on top of the noncross-
ing constraint, which translate in the quantum language
to many-body interactions (of the same functional form)
among the fermions [37]. As with substrate disorder, the
quantization is unaffected as long as the excitation gap
remains open when the interactions are turned on [24].
This property is demonstrated by the results of our sim-
ulations that employ a harmonic contact potential in ad-
dition to the noncrossing constraint [27].

The proposed topological phenomenon stands apart
from its counterparts in optics and mechanics in several
ways. The Chern number manifests itself in a structural
property which can be measured directly from the equi-
librium pattern. By contrast, in the topological band
theory of classical waves, Chern numbers only control the
number of chiral edge modes which are typically probed
via the transport of energy along the edge. Moreover,
to excite an acoustic, optical or mechanical chiral edge
mode, the system must be driven at a specific frequency
corresponding to the band gap, whereas in the directed-
line case there is a notion of band filling, i.e., an ef-
fective Fermi level tuned by the chain density. These
features could be realized in systems as diverse as col-
loidomers [38] and magnetic vortex lines in superconduct-
ing slabs [39].
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