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A topological superconductor ring is uniquely characterized by a switch in the ground state
fermion number parity upon insertion of one superconducting flux quantum - a direct consequence
of the topological “parity anomaly.” Despite the many other tantalizing signatures and applica-
tions of topological superconductors, this fundamental, defining property remains to be observed
experimentally. Here we propose definitive detection of the fermion parity switch from the charging
energy, temperature, and tunnel barrier dependence of the flux periodicity of two-terminal conduc-
tance of a floating superconductor ring. We extend the Ambegaokar-Eckern-Schön formalism for
superconductors with a Coulomb charging energy to establish new explicit relationships between
thermodynamic and transport properties of such a ring and the topological invariant of the super-
conductor. Crucially, we show that the topological contribution to the conductance oscillations can
be isolated from Aharonov-Bohm oscillations of non-topological origin by their different dependence
on the charging energy or barrier transparency.

Topological superconductors (TSC) are expected to
support Majorana bound state excitations with non-
Abelian statistics that might ultimately be harnessed
for error-resistant quantum information processing [1–
12]. Many simple, canonical examples of TSC have been
theoretically formulated in one- and two-dimensional
time-reversal-breaking superconductors (i.e., in class
D) [13–16], and several experiments now strongly sug-
gest these have been realized in proximitized semicon-
ductor nanowires among other systems [17–28]. How-
ever, despite the exciting progress that has been made,
the experimental characterization of candidate TSC still
admits some stubborn controversy. To date, most evi-
dence comes from local probes, such as zero-bias anoma-
lies in transport or excess zero-energy density of states,
which indicate the presence of bound states [17–28]. The
origin of controversy, though, is that any bound state
can always be decomposed, formally, into a pair of Ma-
jorana states so that even prima facie dramatic trans-
port phenomena such as the recently observed quantized
zero-bias peak or an anomalous temperature scaling of
a peak over a large temperature range can arise from
a plausible “quasi-Majorana” situation where the probe
predominantly couples to just one Majorana component
of a bound state that, nevertheless, is not of topological
origin, and does not have exponential-in-length insensi-
tivity to local perturbations [29–35].

Alternative methods to certify the existence of TSC
are therefore desirable. The fractional Josephson effect
(where the current-flux relationship has a 2Φ0 periodic-
ity, with Φ0 = h/2e being the SC flux quantum) at a
junction between topological superconductors has a par-
ticular appeal [36, 37]. But in practice measuring this
effect requires the junction to remain in a fixed fermion
parity state and therefore must be observed at frequen-
cies higher than the inverse parity lifetime [14, 15, 36–
39]. In turn, ac measurement leads to complications

�

SC

normal lead

V = 0+

Vg

normal lead
(L) (R)

FIG. 1. Schematic of a proposed two-terminal transport ex-
periment: a floating superconductor ring (yellow) is coupled
to two normal metallic leads (blue). An infinitesimal bias
voltage V = 0+ is applied across the leads. An insulating
junction (gray) is present in the middle of the ring, and the
enclosed magnetic flux Φ varies continuously along with the
energy δ(Φ) of an Andreev bound state at the junction.

such as Landau-Zener transitions [40], which can yield
a false positive in a topologically trivial state. The frac-
tional Josephson effect however is merely an avatar of a
more fundamental equilibrium topological property: the
Z2 ground state fermion parity of a TSC ring switches
under the insertion of each SC flux quantum [36, 41–46].

In this Letter we describe a definitive transport mea-
surement of this fermion parity switch. The essential
principle is that a Coulomb charging energy EC promotes
the parity anomaly into a genuine 2Φ0 spectral period-
icity [44] (this is also related to its role in “Majorana
teleportation” [47]), and this can be distinguished from
conventional Aharonov-Bohm (AB) oscillations (which
share the same periodicity) since the latter have no such
dependence on EC . To investigate this situation quan-
titatively, we have generalized the Ambegaokar-Eckern-
Schön (AES) model to the case of a topological supercon-
ductor ring tunnel-coupling to external metallic leads.
In this formalism we find that we can explicitly relate
thermodynamic properties of the ring to the topological
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invariant, i.e., the ground state fermion parity.

The full Hamiltonian for the Coulomb blockaded
normal-superconductor-normal (NSN) junction illus-
trated in Fig. 1 is

H = Hnw +Hg +HC +Hleads +HT ,

Hnw =

∫
ψ†
(
− ∂2

x

2m∗
− iασy∂x − µ+ V σz

)
ψ,

Hg = −g
∫
ψ†↑ψ

†
↓ψ↓ψ↑,

HC = EC

(∫
ψ†ψ −Ng

)2

,

Hleads =
∑
L,R

∫
ψ†α

(
− ∂2

x

2m∗
− µα

)
ψα,

HT = −tψ†L(L)ψ(rL)− tψ†R(R)ψ(rR) + H.c.. (1)

Hnw is the semirealistic Majorana nanowire model [14,
15] placed on a ring geometry, although we emphasize
that the microscopic Hamiltonian for the SC ring will
not be so essential in what follows. Hg describes an at-
tractive, local pairing interaction, and HC is the global
charging energy relative to an induced charge Ng. The
Coulomb blockaded SC ring is weakly coupled to exter-
nal leads on the left (L) and right (R) side, with typical
lead (Hleads) and coupling (HT ) Hamiltonians.

Large EC and EC = 0 limits — The conductance in
each of these cases can be understood qualitatively as
shown in Fig. 2. We first consider large EC [22, 48],
and an idealized low-energy limit (not essential for later)
of the microscopic model: a single subgap state bound
to the junction with energy δ(Φ). The Bogoliubov-de
Gennes (BdG) energy spectrum is Φ0-periodic in both
the trivial and topological cases, but the latter has a
parity switch and the former does not [Fig. 2(a) and (b)].
In conventional NSN Coulomb blockade, sharp zero-bias
conductance peaks occur when the induced charge eNg is
tuned to degeneracy between charge states of the island
separated by 2e, and Andreev reflection (transferring a
charge-2e Cooper pair to the island) is enabled. If for any
flux Φ the energy of the subgap state is lower than the
charging energy of those two degenerate states [Fig. 2(c)
and (d)], then Andreev conductance is suppressed as the
island relaxes to the new nondegenerate ground state at
this formerly resonant value of induced charge (Vg = V ∗g ).
Fig. 2(e) and 2(f) show schematically that even though
the BdG energy spectrum δ(Φ) is Φ0-periodic, the spec-
trum of HC in the presence of this subgap state, and the
corresponding conductance, need not be; in the topolog-
ical case the conductance period is doubled.

By setting EC to zero, on the other hand, there is
no Coulomb blockade of Andreev processes. The con-
ductance for the two-terminal junction with a floating
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FIG. 2. Large and no charging energy limits. (a) and (b) are
energy spectra for the bound states at the junction of a topo-
logical or trivial SC ring. (c) and (d) are the evolution of the
energy of the N+1 charge state as a function of the magnetic
flux (Φ). Each color line corresponds to the color point in
the spectra in (a) and (b), and V ∗

g represents the resonance
point at which the N and N + 2 charge states are degenerate.
(e) and (f) are conductance for the NSN junction with strong
Coulomb blockade. Topological (trivial) SC shows 2Φ0 (Φ0)
periodicity. (g) and (h) are conductance for the NSN junc-
tion with no Coulomb blockade. Here, the short (long) SC
ring shows 2Φ0 (Φ0) periodicity in conductance, regardless of
SC being topological or trivial.

superconductor is [49–51]

G =
e2

h

gLLgRR − gLRgLR

gLL + gRR − gLR − gLR
. (2)

Here, gLL (gRR) is the dimensionless local conductance
for the left (right) lead, while gLR (gRL) is the dimen-
sionless conductance from the right (left) lead to the left
(right) lead. In the short ring limit, the conductance
for the NSN junction is always 2Φ0-periodic, regardless
of the SC ring being in the topological or trivial phase
[Fig. 2(g)], as single-quasiparticle interference processes
contribute to all gαβ . In the long ring limit, single-
quasiparticle interference is generally suppressed. As the
transport coefficients are associated with the BdG energy
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spectrum only, which is Φ0-periodic, conductance for a
long SC ring is likewise Φ0-periodic [Fig. 2(h)]. Thus, the
conductance of the NSN junction absent charging energy
cannot distinguish between a topological or a trivial ori-
gin (i.e., arising from a short ring, or low-energy states
due to disorder or order parameter fluctuations) of the
doubled periodicity.

Generalized AES model — To study the properties of
the superconductor ring of Fig. 1 beyond the qualitative
limits of the previous section, we analyze Eq. (1) in an
imaginary-time path integral formulation in the spirit of
AES [52]. Details are in [53], and we outline the proce-
dure here. The partition function of the system can be
written as Z = Tr e−βH ≡

∫
Dψ̄Dψ e−S[ψ̄,ψ]. The infi-

nite leads are replaced by self-energies Σα(τ) = −Γα/β
sin(πτ/β) .

For the quartic terms Hg and HC , we perform the stan-
dard Hubbard-Stratonovich transformations to replace
them with an imaginary-time-varying SC pairing poten-
tial ∆(x, τ)eiφ(x,τ) and an electrostatic potential V (τ)
tracking total charge fluctuations, and to make the prob-
lem tractable, we focus on fluctuations around the saddle
point with constant ∆(x, τ) = ∆0, valid for T � ∆0, and
φ(x, τ) = φ(τ). Note that the effect of the magnetic flux
threading through the ring is now absorbed in Hnw.

To eliminate the φ dependence from the effective
fermion Hamiltonian, we make a gauge transformation
to the fermion fields ψ(x, τ) → ψ′ = exp(iφ/2)ψ. How-
ever, we observe that this results in an atypical bound-
ary condition for fermions: ψ′(β) = − exp(iπW )ψ′(0),

where W = 1
2π

∫ β
0
dτ(∂τφ) = 1

2π [φ(β)− φ(0)] is the inte-
ger winding number of the phase field. In other words, ψ′

is antiperiodic or periodic in β depending on whether the
winding number W is even or odd. This gauge transfor-
mation further results in an effective chemical potential
variation δµ = i(∂τφ/2 + V ). Fixing δµ = 0, in the
same saddle point approximation, results in the Joseph-
son relation V (τ) = −∂τφ/2 locking charge and phase
fluctuations, after which we can finally integrate out the
quadratic fermion fields.

Following these mostly standard manipulations, we be-
gin to approach one of our central results: the only re-
maining degree of freedom in the effective action is the
phase variable, and the partition function can be decom-
posed into discrete topological sectors indexed by W .
Formally, then, the partition function is written as

Z =
∑
W

ZW =
∑
W

ZBdG
W

∫
W

Dφe−SW [φ], (3)

where, first, ZBdG
W results from integrating out the ψ

fields subject to the boundary condition stated above.
Originating from the correspondence between bound-
ary condition (and thus Fourier expansion in boson or
fermion Matsubara frequencies) and winding number, we
obtain that the topological invariant enters the partition

function explicitly, depending on the parity of W ,

ZBdG
even W =

∏
ε>0

2cosh

(
βε

2

)
(4)

ZBdG
odd W = (sgn Pf HBdG)

∏
ε>0

2sinh

(
βε

2

)
(5)

where HBdG is the mean-field quadratic Hamiltonian ap-
pearing in the action after the Hubbard-Stratonovich
transformation, written in the Majorana basis, and ε are
its positive eigenvalues. It is useful at this point to note
that there is no direct correspondence between winding
number and the parity of occupied quasiparticle states,
so this decomposition is conceptually distinct from prior
works where the partition function is written as a sum
of odd and even quasiparticle occupation parity sectors.
We do recover, however, an equivalent partition function
(see e.g. [54]) in the appropriate EC = 0 limit.

Next, the remaining effective action for the phase,
SW [φ] = S0

W [φ] + Sleads
W [φ], consists of the familiar “par-

ticle on a ring” (n.b., in imaginary time, rather than
real space) with a topological term proportional to the
induced charge

S0
W [φ] =

∫
dτ

(∂τφ)2

4EC
− iπNgW (6)

and a dissipative contribution arising from the tunnel-
coupling to the external leads

Sleads
W [φ] = −1

2
Tr log(1−GSCΣ)

' g0

∫
dτ1dτ2
β2

1− cos[φ(τ1)− φ(τ2)]

sin2[π(τ1 − τ2)/β]
, (7)

where g0 = (gLL + gRR)/2 is the dimensionless local con-
ductance averaged over left and right leads. We have
assumed that the tunneling strength between the SC is-
land and the leads Γα is weak, and that the Green’s func-
tion of the SC island GSC(x, τ) is local in both space and
time [53].

Summarizing so far, we have derived an effective ac-
tion in the spirit of the AES model, and in doing so we
made manifest the relationship between the imaginary-
time winding number of the effective phase degree of
freedom and the ground state parity of the supercon-
ductor, expressed as Kitaev’s topological invariant [36].
The charging energy controls the relative contribution
of different winding number sectors to the full partition
function. Therefore, flux period doubling arising from
the topological parity switch has explicit Coulomb de-
pendence, whereas any conventional Aharanov-Bohm pe-
riodicity appears already in Z0 with no dependence at all
on EC . In other words, topological and non-topological
period doubling can be disentangled even in a device
where the latter is present.
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Measurement — Like the partition function itself, any
equilibrium observable can be expanded in W sectors and
evaluated independently in each. To facilitate this, for
each W we can take φ(τ) = 2πWτ/β + δφ(τ), where
δφ(0) = δφ(β) so all the winding is contained in the first
part. With this substitution

S0
W [φ] =

π2W 2

βEC
− iπNgW +

∫
dτ

(∂τδφ)2

4EC
(8)

which heavily suppresses large winding number contri-
butions for intermediate temperatures EC . T � ∆0.
Continuing in this regime, we also obtain to zeroth order
in δφ that Sleads

W = 2g0|W |, so that, approximately,

Z±1/Z0 ≈ (sgn Pf HBdG)
∏
ε>0

2tanh

(
βε

2

)
×

exp (±iπNg) exp

(
− π2

βEC
− 2g0

)
(9)

and so any ground-state parity dependence can be equiv-
alently eliminated by (i) lowering EC , (ii) increasing tem-
perature, or (iii) increasing the barrier transparency and
therefore g0, all of which tend to favor a pinned phase φ.

To quadratic order in δφ we next calculate the zero-
bias conductance [55] of the device in Fig. 1 as

G ≈ g0

〈
eiφ(β/2)−iφ(0)

〉
≈ G0 + (G1 −G0)

Z1

Z0
+ (G−1 −G0)

Z−1

Z0
(10)

up to exponentially small corrections in g0 and (βEC)−1.
Equations (9) and (10) illuminate the behavior of the
weakly Coulomb blockaded SC ring. As the ground
state parity of the SC ring is now contained in the ra-
tio Z±1/Z0, when the charging energy EC goes to zero,
this ratio is exponentially suppressed. Correspondingly,
the conductance without Coulomb blockade cannot give
any information about the ground state parity of the SC
ring. Instead, the conductance without Coulomb block-
ade is fixed by the BdG spectrum and quasiparticle wave-
functions of the isolated ring. G0 in Eq. (10) will be Φ0

(2Φ0)-periodic, when the length of the ring is long (short)
compared to the coherence length and the AB effect is
suppressed (prominent). This asymptotic behavior based
on our partition function calculation is consistent with
the discussion following Eq. (2).

In Fig. 3, we plot the conductance difference after flux
insertion, G(0)−G(Φ0), as a function of the lead-SC in-
terface conductance g0 (since we are not in the strong
Coulomb blockade limit, this is calculated at Ng = 0). A
nonzero value of this conductance difference is a direct
indication of 2Φ0 periodicity, and g0 is realistically tun-
able by a tunnel barrier. We consider first a short SC
ring (it does not matter if the SC is topologically trivial
or nontrivial) without Coulomb blockade and calculate

FIG. 3. Conductance difference G(0)−G(Φ0) as a function of
the barrier transparency characterized by g0. For a short SC
ring (no matter topologically trivial or non-trivial) with no
charging energy, the conductance difference increases mono-
tonically with barrier transparency (blue line). By contrast,
for a TSC ring with charging energy, although increasing
at low barrier transparency, the conductance difference will
eventually decrease with barrier transparency when g0 goes
beyond some critical value ∼ 0.5 (red line).

the conductance using Eq. (2). The resulting conduc-
tance difference is shown by the blue line in Fig. 3. The
signal of trivial AB-induced 2Φ0 periodicity is monoton-
ically increasing with the junction conductance g0. For
comparison, for the NSN junction with finite charging
energy and topological SC ring, the conductance differ-
ence calculated by Eq. (10) is shown as the red line in
Fig. 3. Note that although the conductance difference
initially increases with small g0, beyond some critical
value g0 ' 0.5, the signal of 2Φ0 periodicity decreases
with the conductance. This is because the large tun-
nel transparency effectively renormalizes the charging en-
ergy EC to a smaller value and thus suppresses the par-
ity anomaly-induced 2Φ0 periodicity. Practically, if a
decrease of 2Φ0 periodicity with increasing tunnel con-
ductance is observed experimentally, it would indicate
a topologically nontrivial Coulomb blockaded supercon-
ductor. In reality, the signal may arise from both AB
effect and parity anomaly, and the relative strength of
the two is unknown a priori. We note, however, that the
AB contribution can also be systematically suppressed
by decreasing the junction transparency in the ring, and
the parity anomaly contribution can be systematically
increased by lowering the temperature.

Discussion — Our proposal relates the two-terminal
zero-bias conductance of the device in Fig. 1 to the funda-
mental equilibrium parity anomaly of the bulk topological
superconductor, independent of the presence of Majorana
modes or non-Abelian statistics. Accordingly, accidental,
near zero-energy ABS cannot alter this topological prop-
erty of the ring to produce a false positive signature.
In terms of feasibility, all the ingredients for this pro-
posal are separately in place in previous experiments: (1)
nanowire rings or “hashtags” demonstrating conventional
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Aharonov-Bohm oscilliations in the absence of super-
conductivity [56], (2) two-terminal proximity-SC islands,
where Coulomb blockade can be tuned via the trans-
parency of one of the barriers, and (3) robust Zeeman-
tuned parity switches in Coulomb blockaded class D is-
lands [57], indicating the absence of any substantial den-
sity of subgap states. It remains now to combine these
ingredients. Although long parity lifetimes and protec-
tion from nonequilibrium quasiparticles will eventually
be necessary for quantum information applications, they
are not requirements for the definitive transport mea-
surement of the parity anomaly we have discussed. Fi-
nally, from a theorist’s perspective, we expect our gener-
alization of the AES model, incorporating the mean-field
topological invariant (sgn Pf HBdG) and thereby explor-
ing its beyond-mean-field consequences, could motivate
related generalizations for floating topological supercon-
ductors and quantum dots in other symmetry classes.
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