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We show that the spin-orbit coupling (SOC) in α-MnTe impacts the transport behavior by gen-
erating an anisotropic valence-band splitting, resulting in four spin-polarized pockets near Γ. A
minimal k ·p model is constructed to capture this splitting by group theory analysis, a tight-binding
model and ab initio calculations. The model is shown to describe the rotation symmetry of the zero-
field planer Hall effect (PHE). The PHE originates from the band anisotropy given by SOC, and
is quantitatively estimated to be 25% ∼ 31% for an ideal thin film with a single antiferromagnetic
domain.

Antiferromagnets (AFMs) have been considered as a
promising candidate for next-generation spintronic de-
vices due to their scalability, their robustness against
external magnetic fields, and their ultra-fast spin
dynamics[1–7]. Without a net magnetization, conven-
tional means to detect and manipulate a ferromagnetic
order usually cannot be directly employed in AFMs,
which hinders their device applications. Recently, spin-
orbit coupling (SOC) was experimentally shown to enable
the detection and manipulation of the Néel-vector orien-
tation in easy-plane AFMs[8–11], and therefore became
the centerpiece of antiferromagnetic spintronics. SOC is
known to induce spin mixing and band splitting, leading
to unique magnetotransport signatures. The locking be-
tween electron spin and momentum under SOC results in
uniform spin accumulation: the spin-galvanic effect [12].
This effect in some antiferromagents has been shown to
exert opposite spin-orbital torques on anti-parallel local
spins, and thereby switches the Néel vector[8, 10, 11].

SOC can also lead to anisotropic magnetoresistance
(AMR) and planar Hall effect (PHE)[13–18]. In ferro-
magnetic transition metals and alloys, PHE is known
to result from the s-d mixing given by SOC[14, 19].
Although the exact outcome of SOC is strongly mate-
rial dependent, AMR and PHE are usually proportional
to (M · j)2, and therefore occur in both ferromagnets
(FMs) and AFMs[1]. These effects have been experi-
mentally demonstrated in many metallic and semicon-
ducting AFMs, and are considered as a robust method
to read out the information encoded in the antiferromag-
netic order[8, 10, 11, 20].

Among many AFMs, α-MnTe is particularly attrac-
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tive both in terms of fundamental physics and device
applications[21]. Bulk α-MnTe is a p-type semiconductor
with a Néel temperature of TN ≈ 310K[22–25]. Due to
the semiconducting nature, it is convenient to engineer
the band alignment and the position of the Fermi level.
The Néel vector has three coplanar easy axes, which can
naturally encode 3-state digital information[23]. In the
case of multi-domain, the most populated Néel-vector di-
rection can be easily rotated by either field cooling or an
applied magnetic field as small as 3T[9]. These advan-
tages make α-MnTe an attractive candidate material and
a convenient building block for antiferromagnetic devices
and other related studies.

In this letter, we seek to theoretically understand the
SOC in α-MnTe, and to construct a minimal model that
captures the magnetotransport behavior in the case of a
thin film. The zero-field PHE is shown to originate from
the valence-band anisotropy near Γ induced by SOC. The
PHE percentage is shown to maximize above the band
crossing, and is estimated to be 25% ∼ 31% by a semi-
classical transport calculation based on ab-initio bands.

The ground-state magnetic order of α-MnTe and the
band structure are captured by first-principles calcula-
tions. α-MnTe has a typical NiAs atomic structure as
shown in Fig. 1(a) and (b). The lattice constant is re-
laxed to a1,2 = 4.090Å and a3 = 6.430Å, ∼ 1% smaller
than the values observed in X-ray diffraction [9]. We will
use the relaxed values for the rest of the paper. The
impact of the lattice constants will be discussed in Sup-
plementary Materials Sec. I. Each Mn atom possesses
a local spin moment of 4.40µB , indicating S = 5

2 high
spin state, which consists with previous studies[24–26].
These spins are known to align ferromagnetically within
each Mn layer, whereas the layers stack antiferromagnet-
ically along ẑ [direction (001)]. The antiferromagnetic
phase is found to be 774meV lower in energy than the
ferromagnetic phase, indicating an interlayer antiferro-
magnetic order as the ground state.
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Fig 1: Ab-initio band structure for α-MnTe. (a) Top view of
the magnetic unit cell and the choice of coordinate. (b) Three
dimensional view of the magnetic unit cell. (c) Electron bands
without spin-orbit coupling (SOC), illustrated along the high-
symmetry points of the non-magnetic primitive cell. The red
curve denotes the spin-degenerate valence band. (d and e)
The band structure considering SOC, illustrated along two
different loops in the Brillouin zone shown in (f). The red
arrow denotes the valence band top near Γ. (g) The charge
density contributed by the valence band at Γ. The white
dotted line denotes the plane separating the A-Te and B-Te
atoms, where the charge density is zero. This color contour
plot is illustrated in the plane containing â3 and the two Mn
sublattices.

The band structure near the valence band top is
strongly affected by SOC. As shown in Fig. 1(c-e), the
valence band top is found to be at A point without SOC,
which is∼ 0.05 eV higher than the Γ point. This is consis-
tent with the pioneering calculations done by Podgòrny
et al. [27] and Wei et al. [28]. Once SOC is included,
the configuration with in-plane spin along x̂ [shown in
Fig.1(b)] or other two equivalent directions has the low-
est energy, suggesting that the easy axes are consistent
with the recent experiment[9]. With this magnetic or-
der, C3 rotation about ẑ is no longer a symmetry oper-
ation so that the Γ-M-K-Γ paths are not identical. This
will be explained in-detail by the group-theory analysis
later. Two representative paths are chosen to demon-
strate the band anisotropy, as shown in Fig. 1(f). The
most significant SOC-splitting occurs in the valence band
near Γ-point, as denoted by the red arrow in Fig. 1(d).
This splitting shifts the band top from the A point to
the Γ →K1 =

(
− 1

3 ,
2
3 , 0
)
line, which is now ∼ 0.1 eV

higher. Cryogenic magnetotransport therefore should be
dominated by this band, which is formed by the anti-
bonding of the pz orbitals of Te(5p) sitting on different
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Fig 2: (a) Atoms that are close to the central Te for a bulk
α-MnTe. The red circles label the first-nearest Te atoms used
in the tight-binding model. (b) The atomic structure used for
the tight-binding model. Each A-site Te is surrounded by six
first-nearest B-site ones. (c) and (d), the comparison between
the k · p model and the Wannier model from the ab initio
calculation. The parameters are k0 = 0.162Å−1, α = −6.62,
β1 = 0.202, β2 = 1.191 and k2

0
2m

= 0.023 eV, as defined in Eq.
1. The comparison is illustrated along the paths Γ→ K1 and
Γ→ K2 as denoted in Fig. 1(f).

sub-lattices, as illustrated by the partial charge density
in Fig. 1(g). No band splitting shows up in the con-
duction band, which is dominated by the empty Mn(3d)
3z2 − r2 orbital. The above calculations are carried out
using project augmented wave pseudo-potential (PAW)
[29] implemented in VASP[30, 31]. Generalized gradient
approximation (GGA) in Perdew, Burke, and Ernzer-
hof (PBE) [32] is used as the exchange-correlation en-
ergy for structure optimization, whereas hybrid func-
tional (HSE06) is applied for the calculation of the total
energy. This functional computes the exact Fock energy
and is known to avoid underestimation of band gaps in
certain systems[33, 34]. See Sec. II in Supplemental Ma-
terial for the comparison between the calculated band
structure and experimental data from different sources.
The k-points are sampled on a Γ-centered 13 × 13 × 8
mesh, and an energy-cutoff of 400 eV is used throughout
all calculations.

To analytically understand the impact of SOC, a mini-
mal effective Hamiltonian describing the long-wavelength
behavior is constructed. The NiAs structure of α-MnTe
has the space group P63/mmc (No. 194). Therefore, the
point-group symmetry should be D6h[35] without con-
sidering the magnetic order. However, once an in-plane
easy axis is selected by the Mn spin, the C3 symmetry
about ẑ is broken, and the point group D6h is reduced to
its subgroup D2h. This group contains inversion (I) and
three mirror operations with respect to xy, yz, and zx
planes, respectively. The combination of inversion and
mirror leads to three C2 operations with respect to x,
y, and z axes, respectively. Double group of D2h has
10 irreducible representations, grouped into 5 pairs with
opposite parities. The character table of these represen-
tations is shown in Supplemental Material Sec. III. Since
the valence band is formed by the anti-bonding between
two pz orbitals of Te, basis |φ1〉 = 1√

2
(pzA + pzB) |↑〉 and

|φ2〉 = 1√
2

(pzA + pzB) |↓〉 expand a Γ+
5 irreducible repre-

sentation of D2h, where the superscript ‘+’ denotes the
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even parity.
The effective Hamiltonian in this sub-Hilbert space

can be constructed by the theory of invariants [36].
Given Γ+

5 × Γ+
5 = Γ+

1 ⊕ Γ+
2 ⊕ Γ+

3 ⊕ Γ+
4 , Ĥ (k) =∑

γ aγ
∑|Γγ |
k=1 h

γ
k (k)

(∑2
i,j=1 C

γ
ij,k |φi〉 〈φj |

)
, where hγk (k)

and |Γγ | are the basis and dimension of representation
Γγ , respectively. Coefficients

{
aγ
}

are free parameters
that cannot be dictated from the symmetry analysis.
Cij,k are the Clebsh-Gordan (CG) coefficients available
in [37]. The lowest order basis of Γ+

2 and Γ+
4 are kzkx and

kykz, respectively. Because we are focusing on the trans-
port signature in MnTe thin film, z-direction is mod-
eled as a quantum well state, in which 〈kz〉 = 0 and
〈k2
z〉 = (nπ/d)2 = const., where d is the film thick-

ness and n are integer values labeling different quantum
well states. Since the basis above and their higher or-
der representations all contain odd orders of kz, Γ+

2 and
Γ+

4 do not contribute. Up to the fourth order of mo-
mentum, relevant basis of Γ+

3 are kxky, k3
xky, kxk3

y and
kxkyk

2
z , where again the last term can be combined with

the first one, treating k2
z as a constant. The CG coef-

ficients are C3
ij,1 = (σz)ij . For Γ+

1 , the CG coefficients
are C1

ij,1 = Iij , whose corresponding Hamiltonian is thus
spin-independent. The magnetic order is now fully in-
cluded. One should use k2 and k4, the basis of the Γ+

1

representation of D6h instead. Anisotropic spinless dis-
persion appears since the 6-th order of k, which is ne-
glected. As a result, we have the generic effective Hamil-
tonian given by

Ĥ(k) =
k2

0

2m

[
k̄2 − 1

2
k̄4 − σz

(
αk̄xk̄y + β1k̄

3
xk̄y + β2k̄

3
yk̄x
)]
,

(1)
where k0, m, α, β1 and β2 are free parameters. The di-
mensionless momentum k̄ is defined as k̄ = k/k0, where
k0 sets the length scale. The minus sign of the quar-
tic term is consistent with the first-principles facts that
the splitting occurs in the valence band. To reveal the
microscopic origin of this effective Hamiltonian, a tight-
binding model based on the 5p orbitals of Te atoms is
established. Each Te atom on A site is surrounded by 6
B-site nearest neighbors as shown in Fig. 2(a) and (b).
Twelve localized atomic orbitals are used to describe the
degrees of freedom given by two electron spins, two sub-
lattices and three px,y,z orbitals. The SOC is included by
takingHSO = λL·S as a perturbative term. The effective
Hamiltonian is obtained by a canonical transformation,
expanding up to the first order of λ. Keeping k to the
fourth order, the resulting effective Hamiltonian is con-
sistent with Eq. 1. See Sec. IV in Supplemental Material
for the details of the kz quantization in thin films. The
details of the tight-binding model can be found in Sec.
V.

The parameters in Eq. 1 can be obtained by fitting
the k · p model to the ab-initio bands. Here, the fitting
target is obtained by transferring the plane-wave basis
obtained by VASP into Wannier function basis, result-
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Fig 3: Planar Hall effect percentage as a function of θE , the
angle between the uniform current and the in-plane Néel vec-
tor. (a) The full 3D band structure near Γ obtained from the
Wannier model. (b) Illustration of the Néel vector (along x̂),
the applied electric field (green arrow) and three in-plane easy
axes (orange dashed line). This is a top view of Fig. 2(a). (c)
The Hall percentage obtained from transport calculations.

ing in a Hamiltonian of localized atomic orbitals (imple-
mented by Wannier90)[38, 39]. The fitting parameters
are obtained by machine learning using non-linear con-
jugate gradient regression and golden-section line search,
minimizing the fitting errors near Γ. See Sec. VI in
Supplemental Material for the details of the machine-
learning algorithm. With the optimized parameters, the
k · p bands are compared to the ab-initio bands along
Γ → K1 and Γ → K2, as shown in Fig. 2(c) and (d),
respectively. The spin texture of the valence band is
shown in Fig. 3(a), where the band edge splits into four
pockets polarized along ±z. Importantly, unlike the con-
ventional spin-orbit coupling, the spin-dependent term
here is quadratic or quartic in momentum, such that nei-
ther time reversal T nor its combination with fractional
translation (T T1/2) is a symmetry of the lattice. This
therefore leads to nonzero Hall conductivity even in the
absence of external magnetic field.

To capture the zero-field PHE, transport behavior in-
duced by the valence-band splitting is studied. Scatter-
ing centers induced by vacancies of Mn atoms are con-
sidered. Magnetic moments of these impurities point
in ηx̂ directions, where η = ±1, denoting two sub-
lattices. The impurity potential is thus written as
V̂ =

∑
{i,η} v0 (a+ bησx) δ (r −Riη) where Riη are po-

sitions of magnetic impurities, whereas a and b are spin-
independent and -dependent scatterings, respectively.
The current operator along any direction n̂, j = n̂ ·
(∂Ĥ/∂k), is diagonal so that no inter-band transition oc-
curs. Intrinsic Berry phase contribution is thus absent.
In the diffusive regime with low impurity concentration,
the conductivity can be derived by the Kubo-Streda for-
mula

σθE⊥(‖) =
~

2π
Tr
[
jθE‖ G

R (εF ) jθE⊥(‖)G
A (εF )

]
(2)

where j‖ and j⊥ are current operators in the parallel
and perpendicular directions with respect to the elec-
tric field direction, as shown in Fig. 3(b). Given
θE as the angle between the electric field E and x̂,
jθE‖ = jx cos θE + jy sin θE , and jθE⊥ = −jx sin θE +

jy cos θE . GR,A = [(GR,A0 )−1 − ΣR,A]−1 is the retarded
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Fig 4: Full-band Planar Hall effect (PHE) calculated from
Boltzmann equation. (a) The calculated nonequilibrim distri-
bution function f1

k along different Fermi circles. (b) The PHE
percentage as a function of εF and ξ. Here ξ = NS

NC
is the con-

centration ratio between spin-polarized and spin-unpolarized
scattering centers. (c) The current direction that can maxi-
mize PHE percentage for different εF positions.

(advanced) Green function. In Born approximation,
ΣR,A = 〈V̂ 〉+ 〈V̂ GR,AV̂ 〉, where 〈· · ·〉 is the impurity av-
erage. Assuming the two Mn sub-lattices have the same
impurity concentration ni, one obtains 〈V̂ 〉 = 2aniv0,
which is just a constant absorbed by the Fermi en-
ergy. Therefore, ΣR,A = ∓i/2τ , with the relaxation time
τ−1 = π−1niv

2
0

(
a2 + b2

) ´
d2qδ [εF − εs (q)]. Although

the Dirac delta function is explicitly spin dependent, the
integral over momentum is actually not. This is due to
the special band shape: ε+ (q, θ) = ε− (q,−θ). τ is thus
spin independent even if ΣR,A is solved self-consistently,
as will be shown in Supplemental Material Sec. VII. The
PHE percentage is defined by σ⊥(θE)

σ‖(θE) ×100%, which does
not depend on τ , ni or v0. The numerical result using the
k ·p model is shown in Fig. 3(c) for εF = εV −0.01 eV. A
major result is the two-fold rotational symmetry of the
PHE percentage, rather than three-fold as suggested by
the lattice. This C2 symmetry originates from the D2h

point group brought down from D6h due to the mag-
netic anisotropy as discussed before. Particularly, both
the PHE percentage and the Hall conductivity σ⊥(θε)
are vanishing at θE = nπ/2. At these angles, the mirror
reflection about the plane containing ẑ and electric field
is a symmetry operation, which rules out the Hall effect.

The above transport analysis is based on the mini-
mal k · p model and a constant relaxation time. To
show the quantitative accuracy, this result is now com-
pared to the one given by Boltzmann transport equation
(BTE) using the full ab initio band. In general, such

an effort is necessary to handle the full anisotropic band
structure[40, 41]. Assuming uniform current distribution
and a steady state, BTE is simplified as −eE ·∇pf =
∂f
∂t

∣∣
coll. Here, f (k) = fk0 + fk1 is the total distribution

function, and fk1 denotes the non-equilibrium part. As-
suming fk1 = gk

(
− ∂f0
∂εF

)
≈ gkδ (ε− εF ), detailed balance

requires −eE ·vk =
∑

k′ (gk − gk′)Sk′k, where Sk′k is the
transition rate from k to k′. Here, we consider two types
of scattering mechanisms: the spin-less Coulomb scatter-
ing and the exchange-induced spin-dependent scattering.
ξ = NS

NC
, which is the concentration ratio between these

two types of impurities. Here the transition rate sums
over all considered scattering types, Sk′k =

∑
α S

α
k′k,

where Sαk′k = 2πNα
~
∣∣Hα

k′k

∣∣2δ (εk − εk′), and Hα
k′k is the

Hamiltonian that scatters k to k′. The scattering rate
is evaluated between the full-band eigenstates generated
by Wannier90. With a bit algebra, we obtain gk =

τk0
(∑

k′ Sk′kgk′ − eE · vk′
)
, where τk0 =

(∑
k′ Sk′k

)−1.
Note that the anisotropy of transport is fully absorbed
by gk without assuming a constant relaxation time. After
discretizing the Brillouin zone with a mesh of 250× 250,
gk can be solved through a linear system. The PHE per-
centage is defined as PHE =

∑
k f

k
1 v

k
⊥∑

k f
k
1 v

k
‖

∣∣
εF
× 100%, which

is compared to the k · p result given by Eq. 2 near the
valence band edge [Fig. 3(c)]. Both transport models
capture a C2 rotation symmetry instead of C3. The solu-
tion of fk1 at four different εF positions (i-iv) are shown
in Fig. 4(a). A full scan of εF and the impurity con-
centration ratio ξ is then carried out, with the result
shown in Fig. 4(b). The PHE percentage is numeri-
cally estimated to be 25% ∼ 31% above the band cross-
ing. Changing ξ for several orders of magnitude does
not change this percentage, suggesting that the ratio be-
tween the spin-dependent and independent scattering is
not important. This originates from the special band
shape ε+ (q, θ) = ε− (q,−θ) as discussed before. Further
details of this discussion can be found in Supplemental
Material Sec. VIII. The current direction that maximizes
PHE [θmax

E = arg maxθE PHE (εF )] is shown in Fig. 4(c)
for different εF positions. The value of θmax

E varies be-
tween 45◦ ∼ 54◦ for a wide range of energy, which is
determined by the details of the band shape.

The k · p Hamiltonian given by Eq. 1 is not only ef-
fective, but also minimal. The quartic spin-orbit cou-
pling term is necessary, in the absence of which, the extra
C4T symmetry of the quadratic spin-orbit coupling term(
kxkyσz

)
rules out the Hall conductivity. The kz = 0

approximation assumes that the transport is dominated
by the first sub-band in a thin film of only a couple of
unit cells. It is required to use a full bulk Hamiltonian
to capture the crossover from 2D to 3D, which calls for
future investigations. The linear-system solution of BTE
used above is generic to include arbitrary combinations
of elastic scattering mechanisms. This allows for a single-
step calculation of the full-band non-equilibrium distri-
bution without requiring self-consistent iterations. The
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PHE percentage estimated by this calculation is more
than one order of magnitude greater than that observed
in experiments, suggesting a vast space to improve the
device performance by engineering the εF , applying cur-
rents along θmax

E , or by scaling down the device to the
limit of a single antiferromagnetic domain.
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