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Twisted bilayer graphene (TBG) was recently shown to host superconductivity when tuned to
special ”magic angles” at which isolated and relatively flat bands appear. However, until now
the origin of the magic angles and their irregular pattern remain a mystery. Here we report on a
fundamental continuum model for TBG which features not just the vanishing of the Fermi velocity,
but also the perfect flattening of the entire lowest band. When parameterized in terms of α ∼

1/θ, the magic angles recur with a remarkable periodicity of ∆α ≃ 3/2. We show analytically
that the exactly flat band wave functions can be constructed from the doubly-periodic functions
composed of ratios of theta functions – reminiscent of Quantum Hall wavefunctions on the torus. We
further report on the unusual robustness of the experimentally relevant first magic angle, address its
properties analytically and discuss how lattice relaxation effects help justify our model parameters.

Introduction. The recent discovery of correlated insu-
lation and seemingly unconventional superconductivity
in twisted bilayer graphene (TBG) [1–3] has revived in-
terest in TBG [4–28]. Importantly, these phenomena are
observed in a narrow range of twist angles near 1.05◦,
i.e. the first magic angle where the isolated and rela-
tively flat band appear near neutrality [29–33]. To date,
the origin and recurrence of the magic angles is not clear,
even whether it is a fundamental feature or an outcome
of engineering material parameters. Below we show that
the appearance of the exactly flat band is a fundamental
feature, with a remarkable mathematical structure that
is exposed in this Letter.

Two graphene sheets rotated (”twisted”) by a small
relative angle form a long-periodic Moiré pattern. For
small angles θ, the distinction between commensurate
and incommensurate structures can be ignored, giving
the lowest branch of Moiré periods as L(θ) = a0/2 sin θ/2
(a0 is graphene lattice constant). Electronic structure of
small-angle TBGs was previously addressed by Bistritzer
and MacDonald [29] who reported band flattening and in-
troduced the concept of magic angles (see also [30–32, 34]
and [35–37]). Recently, several groups have used the con-
tinuum model and studied the role of topology of flat
bands near the magic angles [4, 6, 13, 19, 21, 38–41]. Cur-
rently, the nature of superconductivity in this system is
still being debated, however it is clear that the flat bands
emerging at the magic angles are key. However, despite
recent advances, the origin of the magic angles and flat
bands in TBG remains mysterious.

In this Letter, we consider a continuum model, which
is parameterized by interlayer coupling parameters wAA

and wAB for AA and AB bilayer stacking respectively.
Earlier studies [29, 30, 32, 34] set wAA = wAB which gives
band flattening in the gapless model. In reality, for TBG
at tiny twist angles the gap opens and also wAA/wAB

is supressed due to lattice relaxation effects [21, 38, 42].
As an idealization, we consider a continuum model with
wAA = 0 which acquires a chiral symmetry (a unitary
particle-hole symmetry). In this chirally symmetric con-

tinuum model we switch off AA coupling completely but
keep AB and BA finite, and to our surprise a number of
physical phenomena reveal at the magic angles. Not only
do the Fermi velocities of the Moiré Dirac points vanish,
the entire band becomes perfectly flat at the recurrent set
of magic angles (see Fig. 1). The sequence of magic angles
that we find reveals a remarkable asymptotic periodicity
of ∆α ≃ 3/2 which is not present in the wAA = wAB

case (see Table I). Moreover, the band gap is maximized
at the same set of angles. We conclude that because of
its remarkable properties, this is the fundamental model
that concisely captures the magic angle phenomena. The
flatness at magic angles is not just a matter of engineer-
ing material properties, but has deep hidden analytical
connections to Quantum Hall wavefunctions [43] and in-
dex theorems which we reveal.
Continuum model for Twisted Bilayer Graphene. The

continuum model describing a single valley of TBG con-
siders two layers of graphene described by Dirac fields at
K,K ′ points of the Moiré (mini) Brillouin Zone (mBZ),
each rotated by an angle ±θ/2, and coupled through
Moiré potential T (r) [4, 13, 29, 34]:

H =

(

−iv0σθ/2∇ T (r)
T †(r) −iv0σ−θ/2∇

)

, (1)

where σθ/2 = e−
iθ
4
σz (σx, σy)e

iθ
4
σz , ∇ = (∂x, ∂y) and

T (r) =
∑3

n=1 Tne
−iqnr where q1 = kθ(0,−1), q2,3 =

kθ(±
√
3/2, 1/2) are responsible for the Moiré pattern

structure with the modulation kθ = 2kD sin(θ/2); here
kD = 4π/(3a0) is the Dirac momentum. The Hamilto-
nian (1) acts on the spinor Φ(r) = (ψ1, χ1, ψ2, χ2)

T and
the indices 1, 2 represent the graphene layer. The sym-
metries of TBGs allow interlayer coupling of the form

Tn+1 = wAAσ0 + wAB (σx cosnφ+ σy sinnφ) , φ =
2π

3
.

Because of energetically preferred Bernal stacking at zero
twist, the relative strength wAA/wAB is suppressed at
tiny angles [38]; thus the fundamental features of the
TBGs can be expected when only wAB is present.
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Chirally-symmetric continuum model. In this Letter,
we study a pristine model of (1) with wAA = 0. First, one
can liminate the twists in kinetic terms, σ±θ/2 → σ by
rotating the spinors. Then, by reshuffling the spinor to
Φ(r) = (ψ1, ψ2, χ1, χ2)

T, the chirally-symmetric model
reads

H =

(

0 D∗(−r)

D(r) 0

)

, D(r) =

(

−2i∂̄ αU(r)

αU(−r) −2i∂̄

)

,

(2)

where ∂̄ = 1
2 (∂x + i∂y) and U(r) = e−iq1r + eiφe−iq2r +

e−iφe−iq3r. Note that Hamiltonian H has only one di-
mensionless parameter α = wAB/(v0kθ) which fully con-
trols the physics of the system [44].
Our chirally-symmetric Hamiltonian (2) has several

pronounced properties rooting towards the fundamen-
tal nature of the magic angles in TBGs. First, due to
particle-hole symmetry, {H, σz ⊗ 1} = 0, the band struc-
ture of this Hamiltonian is symmetric with respect to
ε = 0. Second, the entire lowest band becomes abso-
lutely flat (that is, with zero bandwidth in the entire
mBZ) at the recurrent values of α corresponding to the
magic angles θ of this model (see Fig. 1). Moreover,
the band gaps are maximized for the magic α where the
bandwidth is exactly zero. For example, the first magic
angle of our model is given by α1 ≈ 0.586, which cor-
responds to θ ≈ 1.09◦ on taking wAB = 110meV and
2v0kD = 19.81eV. Finally, we report that the magic an-
gles in our model follow a remarkable recurrence with
period ∆α ≃ 3/2 (see Fig. 2) which saturates very fast.
We note however in the continuum models with finite AA
coupling (wAA 6= 0), this feature is smeared away and
the pattern is lost for large wAA. The fundamental fea-
tures of the absolutely flat bands, the pronounced band
gaps, and the very strong periodicity in magic angles of
the chirally symmetric continuum model (2) indicate that
this model captures the origin of the magic angles in the
most precise way. Previously the magic angles were de-
fined as twists for which the Fermi velocity vanishes in
Dirac points. Instead, we redefine the notion of magic an-
gles (at arbitrary wAA) as twists where the bandwidth is
minimized (useful for numerics at wAA 6= 0). A striking
result of this paper is not just the vanishing of the Fermi
velocity, but the flattening of the entire lowest band in

TABLE I. Magic angles in models with wAA = 0 and wAA =
wAB. Only the principal magic angles α1 coincide.

α1 α2 α3 α4 α5

wAA = 0 (here) 0.586 2.221 3.75 5.28 6.80

wAA = wAB ([29]) 0.606 1.27 1.82 2.65 3.18

α1 α2 α3

α1 = 0.586 α2 = 2.221 α3 = 3.751
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FIG. 1. Absolutely flat bands in continuum TBG Hamiltonian
(1) with wAA = 0 appear at exact magic angles parameters
α = 0.586, 2.221, 3.751, etc. (Here α = wAB/2v0kD sin θ/2
and energy in units wAB/α). On subfigures (a-c), the band
is numerically flat to an accuracy 10−16. (d) Moiré Brillouin
Zone. (e-f):The band width drops exactly to zero at the set
of magic angles. At the same points, we observe maxima of
the band gaps.

the limit wAA → 0. Below we reveal the absolutely flat
band solution in TBG is linked to flatness of the lowest
Landau level in Quantum Hall Effect on torus [43].

Absolutely flat bands. We start from an observation
that the TBG model (2) always has two zero modes at
points K and K ′ of the mBZ, for all α. This is due
to a symmetry feature D(Rφr) = ωD(r) which holds
for all α, where Rφ denotes a counterclockwise rota-
tion by φ = 2π/3 and ω = eiφ. It is possible to con-
struct an operator R = uφe

φr×∂r , with diagonal matrix
uφ = diag(1, e−iφ), which commutes with the Hamil-
tonian [R,H(r)] = 0. Therefore, each eigenfunction of
Hamiltonian H can be uniquely labeled by C3 rotation
eigenvalue: 1, ω, ω∗. We now consider case α = 0, for
which Hamiltonian (2) has four zero modes: two from
each Dirac points. Dirac points K and K ′ differ in their
C3 rotation eigenvalue: ω, and ω∗ see e.g. [4]. Since
R also commutes with the particle-hole transformation,
[R, σz ⊗ 1] = 0, we can consider each zero mode of K
(or K ′) individually. Turning on α > 0 gradually, which
preserves symmetry, each zero modes being unique must
remain at zero energy.

Using the fact that there are always zero modes in
some points of mBZ, we now explain the origin of the
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FIG. 2. Magic angle recurrence: a) Fermi velocity at K,
K′ as a function of magic angle parameter α (logarithmic
scale). The sequence of the magic angles follows the asymp-
totic ”3/2” rule: distance between adjacent α’s is ”quantized”
with ∆α ≃ 3/2, which saturates very fast, see subfigure (b).

absolutely flat band in our model (HΦk(r) = ε0(k)Φk,
ε0(k) = 0). The appearance of the perfectly flat band
at the set of magic angles implies that the zero-energy
equation [see (2)]

D(r)ψk(r) = 0 (3)

has solutions for arbitrary momenta k in the mBZ, and
the two component wave function ψk(r) should obey the
double-periodic Moiré boundary conditions on transla-

tion vectors a1,2 = 4π
3kθ

(±
√
3
2 ,

1
2 ),

ψk(r+ a1,2) = eika1,2Uωψk(r), Uω = diag(1, ω∗). (4)

As explained above, eq.(3) has always the zero-mode
solution ψK(r) at Dirac point K with the property
ψK(r + a1,2) = uφ ψK(r). The kinetic part of opera-
tor D(r) is completely antiholomorphic (that is, contains
only ∂̄ but no ∂). Thus one can multiply the zero mode
solution ψK(r) by any complex function f(z) of single
variable z = x+ iy,

ψk(r) = fk(z)ψK(r) . (5)

It is possible to find a function fk(z) obeing Moiré
boundary conditions fk(z + a1,2) = eika1,2fk(z) with
a1,2 = (a1,2)x + i(a1,2)y. Such a function fk(z) must
have a simple pole. We stress that in general such a
construction (5) fails to work, as ψk(r) is unwillingly sin-
gular. The true ”magic” happens exactly at the magic

angles (see Fig. 3): the two-component spinor ψK(r)
drops to zero at the BA stacking point ψK(r0) = 0, where
r0 = 1

3 (a1 − a2). Thus we find the flat band solution

ψk(r) =
ϑka1

2π
− 1

6
, 1
6
− ka2

2π

(z/a1|ω)
ϑ− 1

6
, 1
6

(z/a1|ω)
ψK(r) , (6)

where ϑa,b(z|τ) is the theta function with rational char-
acteristics a and b defined as [45]

ϑa,b(z|τ) =
+∞
∑

n=−∞
eiπτ(n+a)2e2πi(n+a)(z+b) .

Under this construction, the zeros of ψK(r) exactly cancel
zeros of the theta function in the denominator. Using
properties of the theta function [45], one can verify that
solution (6) obeys boundary conditions (4). Therefore,
exactly at the magic angles, where ψK(r0) = 0, the wave
functions (6) satisfy the zero-mode equation (3) for all
momenta k. Thus we showed that there is a perfectly flat
band ε0(k) ≡ 0 in entire mBz. The wave function (6) is
reminiscent of lowest Landau level wave functions on the
torus [43], familiar from the Quantum Hall effect. This
connection indicates that the flatness in TBG is not just
a lucky choice of material parameters, but a fundamental
feature of the TBG physics.
Zero mode equation and Fermi velocity. We now show

that zero Fermi velocity is also connected to the zeros of
wavefunctions ψK(r) appearing at the magic angles. The
zero-mode equation at K point reads D(r)ψK(r) = 0
with spinor ψK(r) = (ψK,1, ψK,2)

T. The renormalized
Fermi velocity can be found through first-order pertur-
bation theory

vF (α) =
∣

∣∂k
〈ΦK |Vk|ΦK〉
〈ΦK |ΦK〉

∣

∣

k=0
, Vk =

(

0 k̄

k 0

)

where k, k̄ = (kx± iky)σ0 and ΦK(r) = (ψK , χK)T. This
implies

vF (α) =
|〈ψ∗

K(−r)|ψK(r)〉|
〈ψK |ψK〉 . (7)

Due to the rotational symmetry of D(r), discussed above,
one concludes that if ψK(r) is a solution to the equation
D(r)ψK(r) = 0, then ψK(Rφr) is also a solution. This
in particular implies at arbitrary α relations ψK,1(Rφr±
r0) = ψK,1(r±r0) and ψK,2(Rφr±r0) = e±iφψK,2(r±r0).
The second relation means that ψK,2(r) always vanishes
at r = ±r0 (i.e. for all α), however ψK,1(r) is in general
nonzero. To relate appearance of zeros in ψK(r) to zeros
of the renormalized Fermi velocity, we notice that the
Fermi velocity is proportional to an integral of motion of
the operator D(r)

v(α) = ψK,1(r)ψK,1(−r) + ψK,2(r)ψK,2(−r) , (8)

where v(α) does not depend on coordinates and from (7)
we see that vF (α) ∼ v(α). Thus, because ψK,2(±r0) = 0,
we find vF (α) ∼ ψK,1(r0)ψK,1(−r0). Therefore the van-
ishing of the Fermi velocity vF (α) = 0 means that ei-
ther ψK,1(r0) or ψK,1(−r0) is zero and vice versa. This
is the same argument that gave rise to appearence of
the absolutely flat bands as was shown previously. Thus
vF (α) = 0 implies the existence of the absolutely flat
band with wave function Eq.(6). The appearance of ze-
ros of the Fermi velocity vF (α), and thus the appearance
of flat bands, is not surprising, since vF (α) is just a real
function of a single parameter α. By tuning this parame-
ter, vF (α) crosses zero at some value(s) of α. To trace the
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FIG. 3. (top) Schematic Moiré pattern with regions referred
to in the text marked. (bottom) Wave function density

ρK(r) = ψ†
K
ψK in real space for a single zero mode at the

Dirac point K: ρK(r) is localized on AA stacking and (ex-
actly at the magic angles) has zeros on BA stacking.

appearance of the principal magic angle with α1 ≈ 0.586
we use perturbation theory in α, and compare the two
definitions of magic angles.
Principal magic angle. – We start from the previous

definition of magic angles [29] as twist angles at which
the Fermi velocity vanishes. One can analyze the zero
mode equation at Dirac point K by using perturbation
theory in magic angle parameter α < 1, so spinor ψK(r)
has form

ψK(r) =

(

ψK,1

ψK,2

)

=

(

1 + α2u2 + α4u4 + . . .

αu1 + α3u3 + . . .

)

.

In general, one can find un(r) step by step up to an ar-
bitrary order in α. Up to the eighth order we have

vF (α) =
1− 3α2 + α4 − 111α6

49 + 143α8

294 + . . .

1 + 3α2 + 2α4 + 6α6

7 + 107α8

98 + . . .
. (9)

Setting vF (α) = 0, this expression gives the first magic
angle α1 ≈ 0.587, which is very close to the value α1 =
0.586 obtained numerically. Therefore the perturbation
theory for small α quantitively explains the appearance
of α1 and hints to the appearance of the next magic at
α ∼ 2. Note also that up to α2, vF ≈ (1−3α2)/(1+6α2),
– similar to what was reported in a model with wAA =
wAB [29]. Thus, due to the robustness of the first magic
angle (see Fig. 4), α1≈ 1√

3
is valid both for wAA = 0 and

wAA = wAB.
Alternatively, the appearence of the first magic angle

could be traced through the new definition as the angle

at which the bandwidth is minimized. In our system, the
bandwidth of the flattened bands is determined by dou-
bled energy at the center of the mBZ zone (Γ is k = q1 in
our notations). The symmetries of the Hamiltonian (2)
imply that χΓ(r) = λασxψΓ(r), where λα = ±1, and one
can also obtain that ψΓ,2(r) = iµαψΓ,1(−r), where µα =
±1. The spectrum at Γ point is characterized by the
equations 2∂̄ψΓ,1 ∓ αU(r)ψΓ,1(−r) = εΓψΓ,1(−x, y),
where ”−” captures all odd magic angles and ”+” all
even. Perturbatively one has

εΓ = 1− 2α+
α2

3
+

2α3

9
+

5α4

54
+ . . . (10)

Demanding the zero bandwidth at the first magic angle,
we get α1 ≈ 0.585, which is very close to the numerical
result α1 = 0.586. Thus both in terms of Fermi velocity
at Dirac points or the bandwidth minimization, the prin-
cipal magic angle can be calculated very precisely and its
value is the same as reported in experiments.
Tuning the AA coupling strength. We have proposed a

realistic symmetric model with perfectly flat bands, yet
other models with flattened bands at finite wAA/wAB < 1
can be considered as perturbations around the exactly
flat band model. To explore this, we now turn on AA
coupling back (wAA 6= 0 in T (r)), and still neglect rel-
ative rotations in the kinetic terms σ±θ/2 → σ. We
present the numerical dependence for the gap between
the lowest band and the next excited band at the first
two magic angles as a function of wAA/wAB (see Fig. 4).
Tuning on wAA smears out such fundamental features as
zero bandwidth coexisting with maximized bandgap, and
the overall pattern of the magic angles, making higher-
order magic angles badly defined. Importantly, the first
magic angle is very robust against tuning wAA/wAB con-
tinuously towards 1, until the band gap closes. This is a
general feature of all magic angles which are robust until
the first gap closing.
Experimentally, due to the lattice relaxation effects we

have at first magic angle wAA/wAB ≃ 0.7 − 0.8 which
promotes the gap [21, 38, 42] (see positioning in Fig. 4).
Taking into account the finite gap ∼30 meV observed ex-
perimentally [1, 2], our chirally symmetric model is qual-
itatively closer to real life than the gapless wAA/wAB = 1
model. We also propose the second magic angle to occur
around α2 ≈ 2, which converts to θ2 ≈ 0.22◦-0.29◦, de-
pending on the precise value of wAA(θ)/wAB(θ), and θ2
robust in the range wAA/wAB < 0.2. It would be inter-
esting to pursue the second magic angle in experiments.
In conclusion, we introduced a variant of the contin-

uum model used to describe TBG, and show that the no-
tion of magic angles acquires a remarkably robust char-
acter visible in several properties including the perfect
flatness of the bands at neutrality. We showed that the
emergence of the flat bands in TBGs is related to the
flatness of the lowest Landau level in Quantum Hall Ef-
fect on torus. Given that the model has flat bands, the
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FIG. 4. Band gap evolution in the flow from our chirally
symmetric model (wAA = 0) to the gapless model (wAA =
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α2) experience oscillations and discontinuities.

appearance of the principal magic angle can be precisely
traced with perturbation theory in α. A deeper explana-
tion of the periodic pattern of higher magic angles would
be of great interest to explore in the future. The chi-
ral model captures the nature of the flatness phenomena
and thus the source of magic angles in a minimal way,
and points to a rich underlying mathematical structure,
further investigations of which is left to future work.
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[46] P. San-Jose, J. González, and F. Guinea, “Non-abelian

gauge potentials in graphene bilayers,” Phys. Rev. Lett.,
vol. 108, p. 216802, May 2012.


