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We developed a microscopy technique that can measure the local refractive index without sampling the 
optical phase delay of the electromagnetic radiation. To do this, we designed and experimentally 
demonstrated a setup with two co-localized Brillouin scattering interactions that couple to a common 
acoustic phonon axis; in this scenario, the ratio of Brillouin frequency shifts depends on the refractive 
index, but not on any other mechanical and/or optical properties of the sample. Integrating the spectral 
measurement within a confocal microscope, the refractive index is mapped at micron-scale three-
dimensional resolution. As the refractive index is probed in epi-detection and without assumptions on the 
geometrical dimensions of the sample, this method may prove useful to characterize biological cells and 
tissues. 

 
When light propagates inside a material, the phase of the 
electromagnetic wave is sensitive to the optical path, which 
fundamentally couples the geometrical path and the local 
index of refraction. Thus, methods to map the refractive 
index of a material (e.g. phase contrast microscopy  [1,2], 
digital holography microscopy  [3,4], optical coherence 
tomography  [5,6], etc. [7–10]) are intrinsically indirect as 
they rely on the knowledge, assumption, or measurement of 
the spatial dimensions of the sample. Even when optical 
path delay and thickness of the sample are well 
characterized, we can only obtain the average refractive 
index along the beam propagation axis. This fundamental 
issue has important practical ramifications as it prevents 
performing spatially-resolved measurements of the index of 
refraction. Mapping the distribution and variations of the 
local refractive index is potentially crucial to analyze mass 
density behavior in cell biology  [11–14], cancer 
pathogenesis  [13,15,16], and corneal or lens refraction 
 [17–19].  

Several techniques in the past years have emerged to 
circumvent the coupling of geometrical path and refractive 
index in 3D samples using a tomographic approach, i.e. 
performing multiple measurements from different angles or 
planes to reconstruct the internal refractive index 
distribution  [20–24]. Tomographic phase microscopy 
enabled spatially-resolved measurements of refractive 
index for the first time.  However, as the individual 
measurements are still based on optical path delay, known 
geometrical boundary conditions and/or reference refractive 
index values are needed as well as access to the sample 
from at least two sides. In addition, even under these 
conditions, the measurements are subject to artifacts due to 
phase wrapping when phase variations inside the sample 
are not smooth  [1,2,13]. 

Here we present a novel microscopy technique that 
probes the refractive index of materials relying on photon-
phonon interactions, not optical path delays, and thus 

decouples optical from geometrical path. The technology is 
based on measuring two inelastic Brillouin scattering 
interactions in confocal configuration, probing the same 
acoustic phonon axis so that the refractive index is the only 
physical quantity that affects the ratio of the two Brillouin 
frequency shifts. We experimentally demonstrate that using 
this dual photon-phonon scattering, the refractive index can 
be determined directly, with three-dimensional spatial 
resolution, accessing the sample from a single side and 
without assumptions on the geometrical dimensions of the 
sample. 

To understand the light-matter interaction governing this 
phenomenon, we shall use the classical inelastic light 
scattering formalism  [25–27]. Let’s consider an incident 
electric field ۳ܑሺܚ, tሻ ൌ ۳ܑeሺିܚ·ܑܓன୲ሻ  c. c., where ki is the 
wavevector, ωi the frequency, r is the scattering position 
vector, and Ei0 expresses field amplitude and polarization. 
If Ei encounters a fluctuation of the dielectric constant 
tensor δε(r,t), the resulting scattered electric field Es can be 
obtained from Maxwell equations in dielectric media:  ∇ଶ۳ܛ െ 1cଶ ∂ଶ۳ܛ∂ tଶ  ൌ 1εcଶ ∂ଶ۾∂ tଶ #ሺ1ሻ  

 
where P(r,t) is the induced additional polarization in the 
medium: ,ܚሺ۾ tሻ ൌ ଵସ δઽሺܚ, tሻ · ۳୧ሺܚ, tሻ #ሺ2ሻ  

 
Eq. (1) and (2) are generally valid for scattering phenomena 
and show how the additional polarization acts as a source 
term dictating the emitted scattered field. For Brillouin light 
scattering of phonons, the variation of the dielectric 
constant is induced by the acoustic displacement in the 
medium u(r,t)  
due to spontaneous thermally-driven collective sound 
waves inside material which obey the wave equation and 
are characterized by speed v and attenuation parameter 
Γ [28].  Here, we will focus on the longitudinal acoustic 



 

modes, since they induce significantly more efficient light 
scattering  [29]. Longitudinal modes result in negligible 
depolarization so that the polarization of the scattered field 
is the same as the incident field  [28].  In these conditions, 
the additional polarization can be written as: ۾ሺܚ, tሻ ן න|dܙ|൫ܝ∇ ܘሺܙሻ൯ ۳ܑeൣሺܙିܑܓሻ·ିܚ൫னିΩሺܙሻ൯୲൧  න|dܙ|൫ܝ∇ ܘሺܙሻ൯כ ۳ܑeൣሺܑܓାܙሻ·ିܚ൫னାΩሺܙሻ൯୲൧  c. c. #ሺ3ሻ  
 
where p is the elasto-optic tensor that links a certain δε(r,t) 
to the strain ∇u(r,t) and we expressed the acoustic waves in 
terms of their spatial Fourier components, with q and Ω 
wavevector and the frequency of the acoustic wave, 
respectively.  

The additional polarization in Eq. (3) will give rise to 
two scattered electric field contributions, respectively 
Stokes and anti-Stokes components, with oscillating 
frequency of ωs = ωi ± Ω(q). For acoustic phonons, Ω << 
ωi, thus we can consider the acoustic displacement a weak 
function of time compared to the electric field and write 
∂2P/∂t2~P. Moreover, given the dispersion relationship 
k=ωn(ω)/c, we can also approximate |ki – ks| ≈ 2ki sin(θ/2), 
where θ is the scattering angle, i.e. the angle between ki and 
ks. In these conditions, a solution to Eq. (1) for the scattered 
field is:   ۳ܛሺܚᇱ, tሻ |ܙන|d  ן ሻ൯୲൯ܙᇲି൫னିΩሺܚ·ܛܓሻ۳ܑe൫ܙሺܝ∇ ܘ න|dܚ|eሾሺܙିܛܓିܑܓሻ·ܚሿ  න|dܙ| ൫ܝ∇ܘሺܙሻ൯۳ܑכe൫ܚ·ܛܓᇲି൫னାΩሺܙሻ൯୲൯ න|dܚ|eሾሺܛܓିܑܓାܙሻ·ܚሿ                                                                               c. c. #ሺ4ሻ   
where r’ is the observation position vector, generally of 
much larger amplitude than the scattering position vector 
(r’>>r), so that the unit vector ܓመ   .’r/(r’– r) ≈ ܛ

In the limit of no acoustic and optical attenuation, the 
quantity (ki – ks ± q) is real and the integration in |dr| yields 
a delta function δ(ki – ks ± q). The delta function and the 
oscillating frequency of Es are often interpreted as the 
conservation of momentum and energy of the phenomenon:  ܓୱ ൌ ୧ܓ േ ωୱ           ܙ ൌ ω୧ േ Ω#ሺ5ሻ   
Since a given observation position r’ defines a wavevector 
q through the momentum conservation relation, we can 
study the electric field in the wavevector domain. In 
practice, every material will present both optical and 
acoustic attenuations, so that the quantity (ki – ks ± q) is 
complex, which leads to a frequency spread of the scattered 
light for any given wavevector q. Considering the complex 
dispersion relationships for acoustic waves  [26] and 
electromagnetic waves in optically isotropic material  [30], 
the scattered electric field reads:  ۳ܛሺܙ, tሻ ൬2nଵω୧c ܚ·ሻܙିܛܓିܑܓሻ۳ܑeሺܙሺܝ∇ܘᇲିሺனିΩሻ୲൯ܚ·ܛܓെ݅e൫  ן sin ቀθ2ቁ െ Ωvሺܙෝ, Ωሻ൰  ݅ ൬2nଶω୧c sin ቀθ2ቁ െ Γሺܙෝ, Ωሻqଶ2vሺܙෝ, Ωሻ ൰ 

                                                                              AS  c. c. #ሺ6ሻ   
where we have expressed the refractive index 
nሺωሻ=nଵሺωሻ  ݅nଶሺωሻ in terms of its real, nଵ, and 
imaginary, nଶ, parts and AS stands for the anti-Stokes term. 
As expected, the difference in frequency between the 
incident and the scattered light corresponds to the 
frequency of the acoustic wave. From the first term of the 
denominator in Eq. (6) we can obtain an expression for the 
frequency shift as function of incident frequency (ωi), 
scattering geometry (θ), refractive index (n) and speed of 
sound (v):  Ω ൌ ܴ݁ሺqሻ vሺܙෝ, Ωሻ ൌ 2 ω୧c nଵሺω୧ሻvሺܙෝ, Ωሻ sin θ2 #ሺ7ሻ  
 
Finally, we can calculate the power spectrum of the 
scattered light using the Wiener-Kintchin theorem:  ܵሺܙ, ωሻ ן Γሺܙෝ, Ωሻqଶ2  nଶΩnଵሾω െ ሺω୧ േ  Ωሻሿଶ  Γሺܙෝ, Ωሻqଶ2  nଶΩnଵ ൨ଶ #ሺ8ሻ  

 
Equation (8) shows the expression of the Brillouin 

spectrum featuring two Lorentzian peaks, Stokes and anti-
Stokes components, symmetric with respect to the incident 
frequency and with peaks shifted by ±Ω. 

In our method, we use two scattering geometries: 1) 
back-scattering, with incident and scattered photons normal 
to the sample interface, (0-geometry, Fig. 1a); 2) symmetric 
angled configuration with incident and scattered photons at 
an angle α with the sample interface (α-geometry, Fig. 1b). 
Assuming negligible acoustic dispersion in the Brillouin 
frequency range, the frequency shifts for these geometries 
can be written as: Ω ൌ ω୧ 2nଵሺω୧ሻvሺܙෝሻc #ሺ9ሻ  

Ω ൌ ω୧ 2nଵሺω୧ሻvሺܙෝࢻሻc ቆ1 െ sinଶ αnଵଶሺω୧ሻቇଵଶ #ሺ10ሻ  
 
As shown in Fig. 1, these configurations probe the same 
phonon axis, i.e. ܙෝ ൌ ࢻෝܙ ؠ  ෝ. Thus, defining R=Ωα/Ω0 asܙ
the ratio between frequency shifts, we can derive the 
following expression for the local index of refraction:  nଵሺω୧ሻ ൌ ቆ sinଶ α1 െ Rଶቇଵଶ #ሺ11ሻ  

 

Figure 1. (a) 0-geometry configuration; (b) α-geometry 
configuration. Both geometries sample the same acoustic 
phonon direction inside the volume of interaction.  



 

In Eq. (11), the dependence on other quantities of Eq. (7) 
is lost because the wavelength and the local index of 
refraction are the same for both geometries, and the speed 
of the phonon is the same in both configurations, as it is 
sampled along a common axis.  Therefore, the ratio 
between the two Brillouin shifts depends only on the local 
index of refraction of the sample inside the scattering 
volume of interaction. Since no other physical quantity 
influences the measurement, this can be considered a direct 
measurement of the refractive index.  

To demonstrate our method, we built the experimental 
setup in Fig. 2a; a 532nm continuous wave laser is split in 
two beams of different diameter: 5.4mm and 1.8mm. The 
incident beams are both focused into the sample through a 
dry 20x 0.75NA objective lens [31]. The first beam is on 
the optical axis, i.e. at 0° incidence angle and its 
corresponding scattered light is also collected on the optical 
axis. The second incident beam is off-axis at 5.5mm from 
the center of the lens at an angle α=37° and its 
corresponding scattered light is collected symmetrically at 
the same angle α. The scattered light for both geometries is 
coupled into the same single mode optical fiber acting as 
confocal pinhole, thus collecting light only from a 
microscopic 3D region within the sample.  To facilitate 

collection of scattered photons from the proper scattering 
geometry, the two beams are alternated by a system of two 
shutters and a flip mirror (Fig. 2a). It would be technically 
straightforward to perform simultaneous measurements 
with two couplers and two spectrometers, or a parallelized 
spectral measurement  [32]. A representative set of spectra 
for both geometries is shown in Fig. 2b. 

To measure the small frequency shift due to photon-
phonon interaction we built a double-stage VIPA 
spectrometer with ~0.7 GHz linewidth and 6 dB insertion 
losses  [33]. The VIPA etalon is conceptually like a Fabry-
Perot etalon but has a front surface with a highly reflective 
coating and a narrow stripe anti-reflection coated to enable 
light input. Tilting the etalon enables single shot spectral 
measurements with acquisition times in the order of 0.1-1s 
 [34–36]. By scanning the sample with a translational stage 
and measuring two spectra at each location, the refractive 
index is mapped with 3D resolution. However, because of 
the different illumination/collection paths  [37], the voxels 
sampled by the two geometries do not fully overlap. The 
different voxel size worsens the effective resolution of the 
measurement which we define as the smallest region of 
homogeneous refractive index required to obtain a 
measurement without artifacts. In our configuration, the 0-
geometry has a voxel of 1.31 x 1.31 x 33 μm; the α-
geometry at an angle of ~37° has a voxel of 5.3 x 3.9 x 5.7 
μm.  Thus, our overall resolution is 5.3 μm x 3.9 μm 
(lateral) x 33 μm (axial). Improvements in spatial resolution 
can be achieved with different beam diameter and objective 
lens configurations [38].  

We validated our index of refraction measurement 
against gold-standard Abbe refractometry. We prepared 
several solutions of water and sodium chloride (NaCl) from 
pure water to the saturation point. All solutions were 
prepared and tested at constant temperature of 22 °C.  The 
different salt concentration induces a variation of the 
refractive index from 1.33 to 1.39. Our method is highly 
consistent with the gold standard as the correlation is linear, 
the slope is ~1 with R2>0.99 (Fig. 3).  

Figure 2. (a) Schematic of the dual-geometry Brillouin 
spectroscopy. A flip mirror and two shutters (S1, S2) work in 
alternate configuration to allow acquisition of the two scattering 
geometries. (b) Methanol spectrum for 0-geometry (blue) and α-
geometry (red); the Rayleigh scattering peak (green) shows the 
free spectral range (FSR) of the etalon. Experimental data (dots) 
are fitted to a double Lorentzian curve (solid line) in MATLAB.  

Figure 3. Measured refractive index for different water-
NaCl solutions compared with Abbe refractometer’s values. 
The larger error at high salt concentration is due to Brillouin 
peak broadening that affects the accuracy of the fit. 



 

To demonstrate our 3D mapping capability, we fabricated 
a non-symmetric sample using a drop of cured optical glue 
(Thorlabs, NOA61, n=1.56), deposited on a glass-bottom 
petri dish and surrounded by methanol (n=1.329). The 
result of our refractive index mapping of XY and XZ 
sections are in Figure 4. For this image, we used 15 mW 
incident power, and acquisition time 1 and 3s for 
backscattering and α-angle geometry, respectively. Despite 
the high asymmetry along the z-axis, we obtained accurate 
values for the index of refraction and we reliably 
reconstructed the dome profile of the deposited drop. A 
sample like this would be difficult to characterize for 
techniques based on optical path delay, in particular 

without access to the sample from two sides.  
Interestingly, the co-localized Brillouin interaction can 

provide information also about the speed of the acoustic 
wave and the imaginary part of the refractive index.  
Indeed, from Eq. (8), the linewidth of the Lorentzian peaks 
is proportional to the attenuation coefficients of electro-
magnetic and acoustic waves. In a material with no optical 
absorption, the linewidth is given by Γq2, i.e. the inverse of 
the phonon lifetime; with strong optical absorption, the 
electric field amplitude decreases exponentially so that the 
imaginary part of the refractive index is dominant [39]. In 
the general case, both terms contribute to the linewidth of 
the spectrum; with our dual scattering geometry, the two 
terms can be independently measured if the spectrometer 
has sufficient spectral resolution [40]. 

In summary, we have demonstrated that the dual photon-
phonon scattering measurement of the frequency shift can 
provides the real part of the index of refraction n1 and the 
speed of sound v, while the measurement of the linewidth 
in the two geometries provides the imaginary part of the 
refractive index n2 and the sound attenuation coefficient Γ. 
These quantities can be measured directly and locally with 
micrometric three-dimensional resolution within a standard 
confocal microscope in epi-detection configuration 

The possibility of retrieving material refractive index 
using photon-phonon scattering had been proposed three 
decades ago  [41–44].  Our approach brings three crucial 

innovations to earlier methods. First, at a fundamental 
level, we devised the co-localization of two scattering 
geometries to probe the same phonon axis so that 
anisotropies in the physical properties of the sample do not 
affect the refractive index measurement. Second, our 
confocal sampling of the probed volume of interaction 
provides mapping capabilities at high 3D resolution. Third, 
our common lens configuration only needs to access 
samples from one side. From a practical standpoint, we 
have also developed much faster Brillouin spectrometer 
that enable mapping of the refractive index.  
The uncertainty on the refractive index measurement can be 
determined from Eq. (11). One potential source of 
uncertainty is the evaluation of the angle α, but the angle 
can be calibrated with high precision. Here, we fitted α 
value using three reference materials of known refractive 
index and Brillouin shift; other methods to determine the 
angle of incidence of the α-geometry beam can be 
implemented  [45]. The uncertainty on the refractive index 
can be expressed as linear function of the shift 
measurement precision  [46]. In our experiment, we 
reached a refractive index precision of ~0.001 using a laser 
power of 15mW and exposure time of ~s.  We operated in 
shot noise conditions, thus the frequency shift precision 
improves with the square root of the signal-to-noise ratio.  
A potential source of error comes from the asymmetric 
broadening of the Brillouin linewidth due to the spread of 
angle illuminated and collected by the objective lens. In our 
low NA conditions, such broadening would induce an 
estimation error of ~0.3% of the shift but was avoided by 
experimental calibration with materials of known Brillouin 
shift. At higher NA, this error may increase, however it can 
be effectively eliminated either by modeling the broadening 
term for known illuminating-collecting geometry  [47], or 
by adjusting the Lorentzian fit to dismiss asymmetric 
broadening artifacts  [48]. Another potential source of error 
comes from the acoustic dispersion of the material. The 
derivation of Eq. (11) assumes constant speed of sound at 
the frequencies of the two scattering geometries and thus it 
needs to be modified if acoustic dispersion is significant. 
However, a linear behavior, i.e. no acoustic dispersion, in 
the gigahertz frequency range has been reported in many 
liquid and solid materials  [49–56].     

In conclusion, we have reported a novel method that 
allows direct mapping of refractive index in confocal 
configuration. Our instrument can map the index of 
refraction inside a non-symmetric structure with 3D 
micron-level resolution.  
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Figure 4. XY and XZ cross sections of a drop of photo-activated 
polymer (n=1.56) surrounded by methanol (n=1.329). Bright 
field image is also reported for visual comparison. 
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