aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Entanglement Suppression and Emergent Symmetries of
Strong Interactions
Silas R. Beane, David B. Kaplan, Natalie Kico, and Martin J. Savage
Phys. Rev. Lett. 122, 102001 — Published 14 March 2019
DOI: 10.1103/PhysRevLett.122.102001


http://dx.doi.org/10.1103/PhysRevLett.122.102001

INT-PUB-18-056
NTQUW-18-19

Entanglement Suppression and Emergent Symmetries of Strong Interactions

Silas R. Beane,! David B. Kaplan,? Natalie Klco,"»? and Martin J. Savage?

! Department of Physics, University of Washington, Seattle, WA 98195-1560, USA
2 Institute for Nuclear Theory, University of Washington, Seattle, WA 98195-1550, USA
(Dated: January 29, 2019 - 8:45)

Entanglement suppression in the strong interaction S-matrix is shown to be correlated with ap-
proximate spin-flavor symmetries that are observed in low-energy baryon interactions, the Wigner
SU(4) symmetry for two flavors and an SU(16) symmetry for three flavors. We conjecture that dy-
namical entanglement suppression is a property of the strong interactions in the infrared, giving rise
to these emergent symmetries and providing powerful constraints predicting the nature of nuclear

and hypernuclear forces in dense matter.

Understanding approximate global symmetries in the
strong interactions has played an important historical
role in the development of the theory of Quantum Chro-
modynamics (QCD). Baryon number symmetry arises in
QCD because it is impossible to include a marginal or
relevant interaction consistent with Lorentz and gauge
symmetry that violates baryon number, while the axial
and vector flavor symmetries are understood to be due to
the small ratio of quark masses (and their differences) to
the QCD scale. The approximate low-energy SU(2ny)
spin-flavor symmetry for ny = 2,3 flavors that relates
spin-1/2 and spin-3/2 baryons can be understood as aris-
ing at leading order (LO) in the large-N. expansion,
where N, is the number of colors [1, 2]. In low-energy
nuclear physics, a different spin-flavor symmetry is ob-
served in the structure of light-nuclei and their S-decay
rates, namely Wigner’s SU(4) symmetry, where the two
spin states of the neutron and of the proton transform
as the 4-dimensional fundamental representation [3-5].
It has been shown that this symmetry also arises from
the large-N,. expansion at energies below the A mass
[6—8]. The agreement of large-N. predictions with nu-
clear phenomenology has been extended to higher-order
interactions [9-12], three-nucleon systems [13-15], and
to studies of hadronic parity violation [16—18]. Recently,
however, lattice QCD computations for ny = 3 have re-
vealed an emergent SU(16) symmetry in low-energy in-
teractions of the baryon octet—analogous to Wigner’s
SU(4), but with the two spin states each of the eight
baryons transforming as the 16-dimensional representa-
tion of SU(16) [19]. This low energy symmetry has been
lacking an explanation from QCD. In this Letter, we show
that both Wigner’s SU(4) symmetry for ny = 2 and
SU(16) for ny = 3 correspond to fixed lines of minimal
fluctuations of quantum entanglement in the S-matrix
for baryon-baryon scattering; we propose entanglement
suppression to be a dynamical property of QCD that is

the origin of these emergent symmetries '.

1 Note that this proposal for the suppression of entanglement fluc-
tuations is distinct from the methods of Ref. [20] where a princi-

Of the many features of quantum mechanics and quan-
tum field theory (QFT) that dictate the behavior of sub-
atomic particles, entanglement and its associated non-
locality are perhaps the most striking in their contrast
to everyday experience. The degree to which a system
is entangled, or its deviation from tensor-product struc-
ture, provides a measure of how “non-classical” it is. The
importance of entanglement as a feature of quantum the-
ory has been known since the work of Einstein, Podolsky
and Rosen [21] and later pioneering papers [ ], and
has become a core ingredient in quantum information
science, communication and perhaps in understanding
the very fabric of spacetime [25-27]. Despite this long
history, the implications of entanglement in QFTs, e.g.,
Refs. [28-39], and in particular for experimental observ-
ables in high-energy and heavy-ion collisions are only now
starting to be explored [20, 40-49]. Here we study the
role of entanglement in low-energy nuclear interactions.

In general, a low-energy scattering event can entan-
gle position, spin, and flavor quantum numbers, and it
is therefore natural to assign an entanglement power to
the S-matrix for nucleon-nucleon scattering. We choose
to define the entanglement power of the S-matrix in a
two-particle spin space [50, 51], noting that this choice
is not unique and that others will be explored elsewhere
[52]. This is determined by the action of the S-matrix
on an incoming two-particle tensor product state with
randomly-oriented spins, [1h) = R(Q1)[1)1 ® R(Q2)[1)a,
where R(Q;) is the rotation operator acting in the j*
spin—% space, and all other quantum numbers associated
with the states have been suppressed. For low-energy
processes, this random spin pair projects onto the two
states with total spin S = 0,1, and associated phase
shifts dg 1, in the 1Sy and 39; channels, respectively, with
projections onto higher angular momentum states sup-
pressed by powers of the nucleon momenta. The entan-

ple of maximum entanglement is proposed to constrain quantum
electrodynamics and the weak interactions.



glement power, &£, of the S-matrix, S, is defined as
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where p1 = Tro[ p12 ] is the reduced density matrix
for particle 1 of the two-particle density matrix pi12 =
[Vout ) (Wout| With |[thout) = S|thin). By describing the av-
erage action of S to transition a tensor-product state to
an entangled state, the entanglement power expresses a
state-independent entanglement measure that vanishes
when [t)ous) remains a tensor product state for any [ty ).
Following the analysis of Ref. [20], we consider the
spin-space entanglement of two distinguishable particles,
the proton and neutron for ny = 2 QCD. Neglecting the
small tensor-force-induced mixing of the 35; channel with
the 3Dy channel, the S-matrix for low-energy scattering
below inelastic threshold in these sectors can be decom-
posed as
g 1 (¢ —

( 1201 +ei250)i + 1
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where 1 = 7, ® Z, and & - Z 7 @ a%. It follows

that the entanglement power of S

A 1
E(S) = 5 sin® (2(01 — &o)) (3)
which vanishes when 6; — 69 = m7 for any integer

m. This includes the SU(4) symmetric case §; = do
where the coefficient of & - & vanishes (indicating the 6-
dimensional irrep). Special fixed points where the entan-
glement power vanishes occur when the phase shifts both
vanish, d; = §p = 0, or are both at unitarity, 1 = dp = 7,
or when §; =0, dp = 5 or d; = 5, 6o = 0. The S-matrices
at these fixed points with vanishing entanglement power
areS=+1and +(1+6-6)/22

The entanglement power in nature is plotted in Fig. 1
as a function of the center-of-mass nucleon momentum,
p, up to pion production threshold, making use of the
1Sy and 3S; phase shifts derived from the analyses of
Refs. [53-56]. The four regions indicated are distin-
guished by the role of non-perturbative physics. Region
I shows that entanglement power approaches zero in the
limit p — 0, as will be the case for any finite range inter-
action not at unitarity. At momenta around the scale
of the inverse scattering lengths, region II, poles and
resonances of S produce highly-entangling interactions.
This non-perturbative structure could be considered a
source of ultra-low-momentum entanglement power; ex-
perimental evidence for this is expected to be found in

2 The S-matrices at the four fixed points realize a representation
of the Klein four-group, Zs ® Zs.
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FIG. 1. The entanglement power, £(S), of the S-matrix as a
function of p, the center-of-mass nucleon momentum. The Sg
and °S; phase shifts used to calculate £(S) were taken from
four different models [53-57] to provide a naive estimate of
systematic uncertainties. Data for this figure may be found
in Table 2 in the supplemental material.

the vanishing modification of np-scattering quantum cor-
relations at 19.465(42) MeV where the phase shifts dif-
fer by 7/2 and |[pt,nl) scatters into |pl,n1). In re-
gion IV, where energies are of order the chiral symme-
try breaking scale, the entangling interactions of quark
and gluon degrees of freedom become prominent. It is
region III that is the main focus of this paper—away
from the far-infrared structure but with nucleons as fun-
damental degrees of freedom, the entanglement power
is suppressed. Once relativistic corrections and 35;-3D;
mixing—parametrically suppressed at low-energy—are
included in Eq. (2), £(S) is expected to remain sup-
pressed but non-zero, indicating that the entanglement
suppression in nature is only partial.

Much progress has been made in nuclear physics in re-
cent years by considering low-energy effective field theo-
ries (EFTs), constrained by data from nucleon scattering.
The dp,1 phase shifts can be computed for energies below
the pion mass, from the pionless EFT for nucleon-nucleon
interactions. The leading interaction in the effective La-
grangian is

£ = —3Cs (VNP = 5Cr (NoN)- (NTo) . (4)

where N represents both spin states of the proton and
neutron fields. These interactions can be re-expressed as
contact interactions in the 1Sy and 35; channels with cou-
plings Cy = (Cs—3C7) and C; = (Cs+Cr) respectively,
where the two couplings are fit to reproduce the Sy and
38, scattering lengths. The C coefficients both run with
the renormalization group as described in Ref. [58, 59]
with a stable IR fixed point at C' = 0, corresponding to
free particles, and a nontrivial, unstable IR fixed point
at C' = C, corresponding to a divergent scattering length
and constant phase shift of 6 = 7/2 (the “unitary” fixed
point). At the four fixed points (described above), where
{Cy,C1} take the values 0 or C,, the theory has a con-
formal (“Schrodinger”) symmetry; there is also a fixed
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FIG. 2. Density plot of the entanglement power £(S) of
the S-matrix (see Eq. (7) of the supplemental material) inte-
grated over center of mass momenta 0 < p < mx /2, versus the
Lagrangian couplings C/C, and C1/C, where C, is the crit-
ical coupling for unitary scattering. The entanglement power
vanishes at the four conformal fixed-points (white points), as
well as the fixed line corresponding to Wigner SU(4) symme-
try (white diagonal).

line of enhanced symmetry at Cp = 0, or equivalently
Co = C1, where the theory possesses the Wigner SU (4)
symmetry, as apparent from the form of Eq. (4) with
Cr = 0. When fitting to the scattering lengths one
finds Cr < Cgs ~ C,, since scattering lengths are un-
naturally large in both channels. Therefore, low-energy
QCD has approximate SU(4) symmetry and sits close
to the {C,,C,} conformal fixed point [60]. The emer-
gence of SU(4) symmetry (but not necessarily conformal
symmetry) follows from the large-N. expansion where
Cr/Cs = O(1/N2) [0].

The symmetry points of the EFT can be related to
minimization of the entanglement power of the S-matrix.
Figure 2 shows a density plot of £(S) as computed from
Eq. (4) in Eq. (6) of the supplemental material averaged
over momenta 0 < p < m,/2, as a function of the cou-
plings Co 1 renormalized at u = m,/2 and rescaled by
C, = —% with M the nucleon mass. Superimposed in
white are the four conformal fixed points, as well as the
Wigner SU (4) fixed line. The minima of the low-energy-
integrated entanglement power of the S-matrix coincide
with the points of enhanced symmetry in the EFT; the
SU(4) line corresponds to 6y = d; for all momenta, while
the conformal points off the SU(4) line correspond to
|50 7(51| = 7T/2

In the ny = 2 case, the large-N. expansion gives a
similar expectation for SU(4) symmetry as does a princi-
ple of entanglement suppression. However, an analogous
equivalence does not hold for ny = 3, as the large-N,
expansion predicts the conventional approximate SU(6)
spin-flavor symmetry, while entanglement suppression
predicts a much larger SU(16) symmetry under which

the two spin states of the baryon octet transform as a
16-dimensional representation. To see this, consider the
EFT in the SU(3) flavor symmetry limit of QCD, where
six independent contact operators contribute at LO [11],

Ly5 = —c1(BIBiBIB;) — c2(B!B; B! B;)
—c3(B] B B;B;) — ca(B B} B;B;)
—c5(B]Bi)(BIB;) — cs(B} B;){BIB) , (5)

where (...) denotes a trace in flavor space, and B; is the
3 x 3 octet-baryon matrix where the subscript ¢ = 1,2
denotes spin. E:foz?’ is invariant under rotations and the
transformation B — V BV where V is an SU(3) matrix.
In the large-N, limit of QCD, an SU(6) spin-flavor sym-
metry emerges relating the six coefficients ¢; in Eq. (5)
to two independent coefficients a,b [0] in the SU(6) in-
variant Lagrange density,

7 1 10
C1 27 , C2 9 , C3 81 3
14 2 1
¢ gl = at ghc 9 (6)

A comprehensive set of lattice QCD calculations of light
nuclei, hypernuclei and low-energy baryon-baryon scat-
tering in the limit of SU(3) flavor symmetry by the
NPLQCD collaboration [19, 61, 62] demonstrates that
the ¢; are consistent with this predicted SU(6) spin-flavor
symmetry [19]. The two-baryon sector calculated with
my ~ 800 MeV is found to be unnatural [19, 61, 62],
with a scattering length that is larger than the range of
the interaction, and hence better described by the power-
counting of van Kolck [63] and KSW [58, 59, 64]. Further,
the values of ¢y, co, c3, ¢4 and cg are calculated to be much
smaller than cs, indicating that b < a [19, 61, 62]. When
b =0, the SU(6) is enlarged to an emergent SU(16) spin-
flavor symmetry [19], where the baryon states populate
the fundamental of SU(16),

np=3 1 2
£L6 —>—§CS(BTB) , B= (p¢7p¢,nT7n¢,A¢7...)T, (7)

with cg = 2¢s.

The existence of SU(16) symmetry and b = 0 does
not follow from the large-N,. expansion, but does fol-
low from entanglement suppression. The entanglement
power of the S-matrix in spin-space from the ny = 3
interactions in Eq. (5) can be addressed by considering
its action on states of distinguishable baryons. Comput-
ing the entanglement power & (S) for more than six dis-
tinct two-baryon channels with nonidentical particles—
e.g., AN, Z~ p—shows that zero entanglement power oc-
curs at the SU(16) point where all the ¢,, couplings van-
ish except for ¢5 (indicating the 120-dimensional irrep),
which is unconstrained (also, all LO scattering matri-
ces in the J = 0 and J = 1 mixed-flavor sectors are
diagonal [11, 19]). Thus, the principle of entanglement



suppression gives rise to an approximate symmetry, ap-
parent in lattice QCD calculations [19, 61, 62], that does
not follow from the large-N. limit. We conclude that
the large- N, limit of QCD does not provide a sufficiently
stringent constraint to produce a low-energy EFT that
does not entangle, which could not be deduced from the
ny = 2 sector alone [6]. Thus, the entanglement power
of the S-matrix appears to be an important ingredient in
dictating the properties and relative size of interactions
in low-energy nuclear and hypernuclear systems.

While in nuclei and hypernuclei contributions to bind-
ing from three-body forces between nucleons and hy-
perons are small compared with those from two-baryon
forces, they cannot be neglected and become more im-
portant with increasing density. To understand whether
entanglement suppression dictates approximate SU(16)
symmetry in these interactions as well, we take a more
general approach rather than computing the multi-
baryon S-matrix in various channels to constrain cou-
plings. We begin by assuming exact SU(2)spin X
SU(3)favor symmetry, where corrections due to SU(3)
violation from quark mass differences can be incorpo-
rated in the usual way. Even in the degenerate quark
mass limit, this means restricting ourselves to consider-
ing only interactions that do not couple spin to orbital
angular momentum. While such spin-orbit and tensor
interactions can be important in heavy nuclei, they are
suppressed by powers of the baryon momenta and do not
enter the IR limit of the effective theory. It is then argued
that entanglement suppression requires the interactions
to respect a U(1)'® symmetry, conserving particle num-
ber individually for each of the octet baryon spin states.
To see why this is a reasonable assumption, consider a
1-body operator (which need not be local) that violates
the U(1)'6 symmetry, e.g.,

6= /d?’vdgu [f(v—u)af,ﬁu—i—h.c.], (8)

where «, 8 are annihilation operators for components of
B with a # £, u and v are spatial coordinates and f is
a form factor. This operator implements the transforma-
tion, e.g.,

Ol By, 1) = / Bw [F(w = 3)lox, G, 1)
+ f*(X - W)‘Bw»ﬂyu'yzﬂ ) (9)

producing an entangled state, even if f(x —y) = §%(x —
y), from which it can be concluded that the U(1)*¢ sym-
metry is a necessary condition to forbid entangling inter-
actions ®. Tt follows from simultaneous exact SU(2) x
SU(3) and U(1)!6 symmetries that the LO EFT must

3 The converse is not true: it is possible to show that there exist
entangling interactions which preserve U(1)'6 symmetry [52].

4

respect the full SU(16) symmetry by the following ar-
gument. The charges Q, = BT',B that by assumption
commute with the Hamiltonian H consist of

T € {Zis, Si @TLs, To @t,, Mi} (10)

where S123 € su(2) are the fundamental generators of
SU(2), t, € su(3) with (ta)pe = —ifape for a,b,c=1,...,8
are the generators of the SU(3) adjoint representation
with structure constants fqp., and the M; fori=1,...,15
are a set of independent diagonal traceless 16 x 16 matri-
ces generating U(1)'®, the ignored U(1) symmetry being
baryon number. Since all of the above Q% are assumed
to commute with H, it follows that their commutators do
as well. The full symmetry of H will be the symmetry
group generated by the closure of the @% under commu-
tation. By making use of the fact that the t, generate
an irreducible representation of the su(3) Lie algebra and
invoking Schur’s Lemma, it is possible to show that this
full symmetry algebra is su(16) [52].

Conjecturing that the guiding principle for low-energy
nuclear and hypernuclear forces is the suppression of en-
tanglement fluctuations provides important theoretical
constraints on dense matter systems. The Lagrange den-
sity describing the ny = 2 sector with vanishing entangle-
ment power, and therefore SU(4) spin-flavor symmetry,
is

4
Low= = YO (NN ()
n=2

with previous notation C’,(SQ) = (g and cg) = cg, while
for ny = 3 with SU(16) spin-flavor symmetry,

16
Lo=3 = -3 %cg” (B'B)". (12)
n=2

Calculations of hypernuclei and hyperon-nucleon interac-
tions imposing SU(16) spin-flavor symmetry on the low-
energy forces are now in progress [65]. Our work suggests
that such calculations could probe the nature of entan-
glement in strong interactions.

The Pauli exclusion principle’s requirement of anti-
symmetrization produces a natural tendency for highly
entangled states of identical particles in the s-channels.
It is somewhat perplexing how to understand the result
that the S-matrix for baryon-baryon scattering exhibits
screening of entanglement power when the quarks and
gluons that form the nucleon are highly entangled. It
may be the case that the nonperturbative mechanisms
of confinement and chiral symmetry breaking together
strongly screen entanglement fluctuations in the low-
energy sector of QCD beyond what can be identified in
the large- N, limit of QCD.

While our work has focused on low-energy interac-
tions, preliminary evidence for entanglement suppression
at higher orders in a derivative expansion is seen in the



ny = 2 low-energy constants (LECs) for operators up to
NNLO. The contact terms of the two-nucleon potential
in the center-of-mass frame are [60]

Veontact = Cs + Cp 71 - 02 + ch(fr?tact , (13)
V2 oo = CL @2 + C3 7251 - G2) + Cs (7-31)(T- 52)

with ¢§ = p’ — p and p,p’ the initial and final nu-
cleon momenta. Calculating their entanglement power,
it is expected that Cr, Cs3, and Cg will be suppressed at
low energies. Numerical values of these potential coeffi-
cients are determined from the values of the spectroscopic
LECs [67-69] (see Fig. 1 of the supplementary mate-
rial). At small values of the maximum scattering energy,
T3, the coefficients of the non-entangling operators,
Cs and (4, are found to be larger in magnitude than
their entangling counterparts. Furthermore, as 175" is
increased and shorter distances scales are probed, the
suppression lessens and Cg grows. While these observa-
tions are consistent with entanglement-suppressed LECs,
work remains to be done in understanding the mecha-
nism that suppresses entanglement power in the transi-
tion from QCD to low-energy effective interactions, and
the full consequences of this mechanism. For instance,
one can envisage a new entanglement-motivated power-
counting scheme accommodating the features found here,
which provides an improved organizational principle for
interactions in nuclear physics.

Nuclear physics, with its rich theoretical structure and
phenomenology emerging from QCD and QED in the in-
frared, provides a unique forum for the study of funda-
mental properties of quantum entanglement. We conjec-
ture that the suppression of entanglement is an important
element of strong-interaction physics that is correlated
with enhanced emergent symmetries.
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