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Simulations are used to study the steady shear rheology of dense suspensions of frictional particles
exhibiting discontinuous shear thickening and shear jamming, in which finite–range cohesive inter-
actions result in a yield stress. We develop a constitutive model that combines yielding behavior and
shear thinning at low stress with the frictional shear thickening at high stresses, in good agreement
with the simulation results. This work shows that there is a distinct difference between solids below
the yield stress and in the shear-jammed state, as the two occur at widely separated stress levels,
with an intermediate region of stress in which the material is flowable.

PACS numbers: 83.80.Hj, 83.60.Rs, 83.10.Rs

Introduction: Concentrated, or dense, suspensions of
particles in liquid are found in both natural [1] and in-
dustrial settings [2–4]. Under shear, non-Brownian sus-
pensions display a number of non-Newtonian proper-
ties; considering just the shear properties, these mixtures
may undergo yielding, shear thinning, shear thickening
or even jamming [5–8]. Such non-Newtonian rheology
arises from particle interactions [7], influenced by the
solid-fluid interfacial chemistry and chemical physics of
both phases [9–11], as well as from frictional interactions
between particles [12–14] that are influenced by rough-
ness [15, 16]. Suspensions of particles interacting by at-
tractive forces can exhibit a yield stress and at larger
stresses shear thicken, and, as discussed here, possibly
jam. Shear thickening (ST), the increase of relative vis-
cosity ηr with increasing shear rate γ̇, can occur as con-
tinuous shear thickening (CST) or discontinuous shear
thickening (DST) in dense suspensions; here the relative
viscosity ηr = η(φ, γ̇)/η0 is normalized by the suspending
fluid viscosity η0, where φ is the volume fraction. The
viscosity varies continuously with γ̇ in CST, while DST
is characterized by dηr/dγ̇ →∞ at some stress, often re-
sulting in orders of magnitude increase in viscosity. It has
been demonstrated that if φ is sufficiently large, the sus-
pension can even become a shear-jammed (SJ) solid [17];
this solid is fragile, in the sense that it is maintained in
this state by the imposed load, and would, for example,
fail if the load is applied in the reverse direction [18]. A
recent body of work [19–24] has related shear thickening
to a transition from lubricated to frictional interactions
of particles above an “onset stress.” An approach cap-
turing this two-state model [19] based on a mean-field
description of the fraction of particle interactions that
are frictional has been shown [25] to be successful in de-
scribing both the relative viscosity ηr and normal stress
differences found in simulations of shear thickening fric-
tional suspensions.

To date, most study has been focused on the flow be-
havior of dense non-cohesive suspensions. However, van

der Waals forces [26], depletion forces due to dissolved
non-interacting polymer [27], or the presence of an ex-
ternal field [9] can all lead to attractive forces between
particles. A demonstrated influence of attractive forces
is that the shear thickening may be obscured [9, 27, 28].
When the low-stress viscosity becomes sufficiently large
or a yield stress develops, a suspension shear thins to a
high shear-rate viscosity, which in the case of the shear-
thickening suspension would be the thickened state of the
non-cohesive suspension [9, 11, 27, 28].

The studies noted just above addressed volume frac-
tions exhibiting CST. It is our particular goal to demon-
strate the influence of cohesion for suspensions of volume
fractions for which the non-cohesive suspension under-
goes DST and SJ. The latter will illustrate that the same
material may exhibit shear yielding at low stress, flow at
intermediate stress, and shear jamming at high stress.
This provide a distinctly different picture for nearly rigid
particles as to the relation of yielding and jamming than
has been suggested in other work [29], as these two phe-
nomena occur at widely separated stress levels, with an
intermediate region of stresses for which the material is
flowable.

We explore a broad range of volume fractions, with a
focus on φ close to the frictional jamming volume frac-
tion, denoted φµJ . In this range of solid fraction, non-
cohesive suspensions show DST and shear jamming. We
extend a constitutive model for dense frictional suspen-
sion rheology [25] to cohesive systems exhibiting yielding
and shear-thinning in addition to shear thickening. Using
the simulation results and guided by this model, a state
diagram for dense frictional suspensions with attractive
interactions is proposed.

Simulations: An assembly of inertialess spheres sus-
pended in an equal density Newtonian fluid is simu-
lated under conditions of imposed shear stress σ, as de-
scribed previously [30]. The suspension flows at a time-
dependent shear rate γ̇(t) in a 3D Lees-Edwards peri-
odic computational domain. We simulate 500 particles
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FIG. 1. Relative viscosity ηr plotted versus dimensionless
applied stress σ̃ = σ/σ0 for volume fraction φ = (a) 0.56
and (b) 0.6 and several values of attractive strength FA at
µ = 1. The symbols are simulation data, with dashed lines
provided to guide the eye. Open (red) symbols in (a) are
results with 2000 particles (other cases use 500) for FA =
0.3 and 0.6, showing results are very similar and finite size
effects are minimal for the conditions studied here. Dotted
lines in (a) show ηr ∝ σ/σ0, signifying increase in viscosity at
constant rate, as shown in Fig. S2a [32].

in the domain, using equal volume fractions of particles
with radii a and 1.4a. The bidispersity prevents ordering.
Simulations with 2000 particles have been performed to
test finite-size effects.

The particles interact through short-range hydrody-
namic lubrication forces FH , a conservative force Fcons =
FA+FR (where A and R denote the attractive and repul-
sive contributions, respectively), and contact forces FC .
The contact force allows friction, with friction coefficient
µ. An electrostatic repulsion force decaying with inter-
particle surface separation h over a length scale defined
by the Debye length λ is used: |FR| = F0 exp(−h/λ).
To model the force of attraction, a van der Waals form
FA(h) = Aā/12(h2 + H2) is used, where A denotes the
Hamaker constant and ā denotes the harmonic mean ra-
dius ā = 2a1a2/(a1 + a2) [31]. The parameter H is fixed
at H = 0.1ā, and is employed to eliminate the diver-
gence of FA at contact (h = 0). The conservative force
is illustrated in Fig. S1 of the Supplementary Informa-
tion [32]. The strength of attraction is controlled by A,
which determines the value of the attractive force at con-
tact, FA(0) (referred to as FA in the rest of the article).
The contact force between two particles is modeled by
linear springs and dashpots as described elsewhere [20].
Tangential and normal components of the contact force
FC between two particles satisfy the Coulomb friction
law |FC,t| ≤ µ|FC,n|, where µ = 1 is used in the current
work (note that FC,n is only compressive here.)

Simulation results: Figure 1 shows the influence of
attractive forces on the rheology of a frictional non-
Brownian suspension for φ = 0.56 and 0.6, where the
shear stress is scaled by σ0 = F0/6πa

2 (using the smaller
particle radius). To characterize the steepness of the vis-
cosity increase in the ηr vs. σ/σ0 flow curve, the shear–
thickening portion is fitted to ηr ∝ (σ/σ0)β , where β < 1
signifies CST and β = 1 indicates that the shear rate,
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FIG. 2. Steady state flow curves for volume fractions (a) φ =
0.56 and (b) 0.6 from Figs. 1a and 1b plotted versus scaled ap-
plied shear stress σ̂ = σ/σRA

0 , σRA
0 = [FA(0) + FR(0)] /6πa2;

FR(0) and FA(0) are the values of repulsive and attractive
forces, respectively, at surface separation h = 0. The symbols
are simulations with different values of strength of attraction
and the solid lines are predictions from (4).

γ̇/γ̇0 = ηr/(σ/σ0), is unchanging while stress increases
and hence is the onset of DST. For φ = 0.56, the non-
cohesive frictional suspension shows DST between two
flowing states, as is evident from ηr ∝ σ/σ0 (i.e. β = 1)
in Fig. 1a. The development of a moderate yield stress σy
is observed for FA = 0.3. For FA ≥ 0.3, the suspension
flows when σ > σy, first shear thinning from the infi-
nite viscosity of the unyielded material and eventually
shear thickening. This thickening begins continuously,
but DST occurs as σ is further increased. An increase
in FA increases σy, which by raising the minimum vis-
cosity reached by shear thinning effectively weakens the
extent of shear thickening. For FA = 0 to 0.6, discontin-
uous shear thickening is still observed, as shown by dot-
ted lines indicating ηr ∝ σ/σ0. Development of a yield
stress, indicated by a slope of -1 in Fig. S2a [32], does
not immediately lead to obscuring of shear thickening.
However DST is not observed for FA = 0.75, as only a
weak shear thickening is needed to carry the suspension
from its minimum viscosity to the high-stress plateau.
All shear thickening is obscured with further increase in
FA, consistent with previous simulation and experimen-
tal studies at lower volume fractions [9, 27, 28].

At φ = 0.6, exceeding the frictional jamming fraction
φµJ ≈ 0.585 for µ = 1, as shown elsewhere [25], the
suspension shear jams at sufficiently large shear stress,
σsj(φ). Upon introducing cohesion, the suspension de-
velops a yield stress σy and cannot flow for σ < σy.
Thus, the cohesive frictional suspension is a non–flowable
solid for σ < σy, flows at intermediate stress, and shear
jams above σsj. However, for FA = 0.91 the suspension
cannot flow for any value of shear stress, as σy > σsj.
Note that below the yield stress one has a standard, al-
beit soft, solid that resists deformation in all directions
equally if prepared without directional bias, whereas the
shear-jammed solid at σ > σsj is fragile in the absence
of the cohesive forces, and thus has anisotropic proper-
ties [18, 33].

Constitutive model: We renormalize the scaled stress as
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σ̂ = σ/σRA
0 and shear rate as ˆ̇γ = σ̂/η0, where the scaling

factor σRA
0 = (FA + FR)/6πa2 is the sum of repulsive

and attractive stress magnitudes at surface separation
h = 0. In Fig. 2 we plot steady state viscosity ηr versus
shear stress σ̂. We observe the collapse of viscosity data
for intermediate to high stress to the non-cohesive flow
curve. The yield stress decreases the range of stresses for
which shear thickening is observed.

To quantify the effect of attractive interactions on the
flow behavior of shear thickening suspensions, we use the
Herschel-Bulkley equation

σ̂HB(ˆ̇γ) = σ̂y +K ˆ̇γn, (1)

where σ̂y denotes the scaled yield stress, K is the consis-
tency index and n is the power law exponent. We find
that n = 0.5 describes the yielding and shear–thinning
behavior well for all FA and φ considered here, consistent
with prior studies [9, 34–36]. We recast Eq. (1) as

ηHB
r (σ̂) =

K2σ̂y
(σ̂ − σ̂y)2

+
K2

(σ̂ − σ̂y)
. (2)

The model parameters σ̂y and K are obtained by fitting
the low stress (yielding and shear-thinning) portion of the
flow curve to Eq. (2). The shear thickening of the non-
cohesive suspension viscosity has been expressed as [25]

ηCr (φ, σ̂) = αm(σ̂)[φm(σ̂)− φ]−2 , (3a)

where

φm(σ̂) = φµJf(σ̂) + φ0J[1− f(σ̂)] (3b)

and

αm(σ̂) = αµf(σ̂) + α0(1− f(σ̂)) (3c)

interpolate between two values of φ and α, while f ∈
[0, 1] represents the fraction of frictional contacts, whose
form is presented in Mari et al. [20]. As in earlier
works [9, 27, 35], various contributions to the viscosity
can be superimposed as

ηr(φ, σ̂) = ηHB
r (φ, σ̂) + ηCr (φ, σ̂). (4)

The viscosity modeled by Eq. (4) is compared to the sim-
ulation data in Fig. 2 and is seen to agree well. We also
find that the second normal stress differenceN2 (shown in
Supplementary Material [32], Fig. S8) behaves in a fash-
ion similar to the shear stress, i.e., it displays cohesion-
dependent yield behavior at low stress while the behavior
is independent of attraction at high stress. In Fig. S7
[32], we demonstrate a possible extension of the model to
non–cohesive Brownian suspensions capturing well both
Brownian shear-thinning and frictional shear-thickening.

Origin of yielding: In an attempt to get a more mech-
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FIG. 3. Total relative viscosity (ηr) and the contributions
arising from hydrodynamic interactions, conservative forces,
and contact forces, plotted versus scaled shear stress σ̂ for a
non-Brownian suspension (φ = 0.56) with FA = (a) 0.3 and
(b) 0.91. The broken vertical line indicates the yield stress.

anistic understanding of the behavior of cohesive shear-
thickening systems, we focus on the origin of yielding,
especially with increasing force of attraction. Subse-
quently, we separate the total viscosity into contact and
non-contact contributions, which are shown as functions
of stress σ̂ for FA = 0.3 and 0.91 in Figs. 3a and 3b,
respectively. The hydrodynamic contribution to overall
viscosity is insignificant for the conditions presented. At
low strengths of attraction, non-contact (attractive and
repulsive) forces provide the dominant contribution to
overall viscosity at low stresses, while the contact con-
tribution takes over at higher stresses. Snapshots of
force networks for FA = 0.3 at low stress are plotted
in Fig. S4a [32]. Particles are seen to interact only via
finite-range (non-contact) forces. On closer inspection,
repulsive forces are seen to interact primarily along the
compressive axis as they resist approaching particles. At-
tractive forces, by contrast, generate resistance along the
extensional axis for departing particles.

In stark contrast, for high strength of attraction the
dominant contribution is from contact forces, because
the potential minimum is comparable to the lubrication
cut-off length, bringing particles into contact, irrespec-
tive of applied stress (as seen in Fig. 3b). This can be
confirmed by the presence of frictional force networks in
the system even at low stress (Figure S4b [32]). Figure
2a provides insight into this behavior; the yield stress for
FA = 0.91 is larger than the onset stress σ̂on

.
= 0.3 for

the non–cohesive (FA = 0) curve. While the cause of the
yield stress is found in the strong attractive forces, these
forces bring particles into contact to allow formation of
the frictional force networks seen in Fig. S4b [32]. Fric-
tional contacts are capable of resisting an applied shear
stress, leading to an increase in yield stress and viscosity.

Flow state diagram: Using the simulation results of
the present work (see data [32]), we construct a flow
state diagram in the σ̂ − φ plane, as shown in Figure 4
for FA = 0.3. Since the focus of the present study is
on the rheological behavior for volume fraction close to
DST or above, we have only probed volume fractions
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FIG. 4. Flow state diagram in σ̂−φ plane for FA = 0.3 show-
ing shear jammed (green), unyielded (blue), flowing (white)
and inaccessible (gray) states. The green and blue solid lines
are the stress–dependent jamming and yield lines, respec-
tively, while the red dashed line is the DST line and shows
the locus of points where ∂γ̇/∂σ = 0. Dot–dashed black lines
show φµJ , φm

y and φ0
J. Symbols show different flowing states

of the suspension: Shear thinning (blue pluses), shear thick-
ened state (blue circles), CST (red crosses), DST between two
flowing states (red inverted triangles), DST between a flowing
and a jammed state (green diamonds). Here, we have only
probed volume fractions φ ≥ 0.52, and the yield line might
continue for lower volume fractions.

φ ≥ 0.52. For the range of volume fraction φµJ < φ < φmy
the suspension is in different solid states for σ̂ < σ̂y and
σ̂ > σ̂sj. There is a volume fraction φmy above which
flow does not occur at any stress σ̂. With increasing
φ the range of stress σ̂ for which the system can flow
shrinks until it vanishes at φmy . For φ < φµJ the sys-
tem is in an unyielded solid state for σ < σy, with flow
at larger stresses. The yield stress increases with φ and
diverges at φmy , which is smaller than φ0J; this behavior
has also been observed previously for other non-Brownian
suspensions [37]. For volume fractions below φC, continu-
ous shear thickening (CST) is observed for intermediate
stress values. For φC ≤ φ < φµJ , DST is observed be-
tween two flowing states, as shown by the dashed (red)
line, which is the locus of points where ∂γ̇/∂σ = 0, while
for φµJ < φ < φmy the upper boundary of DST states is the
stress-dependent jamming line φm(σ̂) shown by the solid
(green) line. A similar flow-state diagram was proposed
recently [38] using constraint counting arguments. Since
we present the state diagram for a single nonzero FA, we
note that at FA = 0 the state diagram would reduce to
the one proposed previously [25]. It is beyond the scope
of this study, but we note that higher values of FA at
φ > φµJ could result in a completely unflowable material,
i.e. the attractive forces would pull the system into a con-
tact network from which it could not yield, although an
applied stress might cause deformation of contacts that
would relax upon removal of stress.

Equations 2 and 4 demonstrate how the development
of yield stress and shear thinning shrinks the range of
stress for which shear thickening is observed. For a given
volume fraction φ, increasing FA leads to an increase in
yield stress σ̂y, which in turn increases both σ̂on and the
viscosity at the onset of shear thickening. The viscosity
at σ̂on should follow ηr(σ̂on, φ) ≤ ηµr (φ), where ηµr (φ) is
the viscosity of the thickened (frictional) state. At the
equality shear thickening is obscured, implying that the
system yields and shear thins directly to the frictional
branch.

Conclusions: In this work we have studied the rheol-
ogy of dense suspensions interacting through both finite-
range cohesive and frictional contact interactions. We
report flow curves that show yielding behavior at low
stress and shear thickening as well as jamming at high
stress, depending on the volume fraction φ relative to
its frictional jamming value φµJ . This yield-to-jamming
within a single concentration suspension has been con-
ceptualized [39], but never previously reported from ex-
periment or simulation. This behavior provides a clear
distinction between yielding and jamming for nearly rigid
particles, unlike other suggestions that these phenomena
are essentially the same [29]. The distinction becomes
complicated when the particles have a finite elastic mod-
ulus (e.g., yielding at stresses above jamming may take
place [40]). It is important to note that the yielding
behavior we consider is due to attractive forces; a finite-
range repulsive force could lead to a glass-like yielding
behavior but this is not considered.

We have proposed a constitutive model that captures
the observed behavior. The yield stress σ̂y depends on
the strength of attraction, which in principle can be
controlled by particle size, microstructure, chemistry at
solid-fluid interfaces, and properties of fluid and solid
phases, such as dielectric properties [9, 11, 34, 41, 42].

Our work thus provides fundamental insight into the
complex rheological behavior of particle suspensions
based on balances between shearing, conservative, and
frictional forces. Although we have used specific force
profiles for the repulsive and attractive forces, modeling
electrostatic repulsion and van der Waals cohesion, re-
spectively, the modeling of rheology of dense suspensions,
and the proposed state diagram, should be qualitatively
similar for generic attractive and repulsive forces. Addi-
tionally, the proposed state diagram can, in principle, be
extended to encompass systems that exhibit shear thin-
ning because of Brownian effects.
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