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We identify a new kind of physically realizable exceptional point (EP) corresponding to degen-
erate coherent perfect absorption, in which two purely incoming solutions of the wave operator for
electromagnetic or acoustic waves coalesce to a single state. Such non-hermitian degeneracies can
occur at a real-valued frequency without any associated noise or non-linearity, in contrast to EPs
in lasers. The absorption lineshape for the eigenchannel near the EP is quartic in frequency around
its maximum in any dimension. In general, for the parameters at which an operator EP occurs, the
associated scattering matrix does not have an EP. However, in one dimension, when the S-matrix
does have a perfectly absorbing EP, it takes on a universal one-parameter form with degenerate
values for all scattering coefficients. For absorbing disk resonators, these EPs give rise to chiral
absorption: perfect absorption for only one sense of rotation of the input wave.

Exceptional points (EPs) are generic degeneracies of
non-hermitian systems, where two eigenvalues and eigen-
vectors of a linear operator coalesce, reducing the size of
the space spanned by the eigenbasis [1–5]. EPs arise in
open physical systems and are of interest for a number of
reasons. For example, they induce chiral behavior under
cyclic variation of the parameters of the relevant opera-
tor, leading to robust asymmetric state transfer [6, 7]. In
addition, near an EP a resonant system shows enhanced
frequency splitting under small perturbations that may
lead to improved sensing [8–10]. EPs can lead to counter-
intuitive behavior as loss or gain is varied, such as reso-
nance trapping in nuclear and atomic scattering [11, 12],
enhanced transmission with increasing loss in coupled
waveguides [13, 14], and suppression of lasing with in-
creasing gain in coupled cavity systems [15, 16]. Recently,
work of Wiersig has shown that the chirality associated
with EPs can be manifested in disk resonators in the form
of chiral lasing [17, 18], an effect confirmed in recent ex-
periments by Peng, et al. [19].

Two types of EPs have been extensively studied in
physics: resonant and scattering. First to be studied were
resonant EPs, in which two resonances of an open system
coalesce. Resonances are solutions of the wave equation
with purely outgoing boundary conditions, typically oc-
curring at complex-valued frequencies, corresponding to
poles of the scattering matrix S. When parameters in
the wave equation are varied, it is possible for two such
resonances to coincide (double pole), leading generically
to an EP. In unitary systems (e.g. no imaginary part
of the index of refraction or potential), resonant EPs
can only occur at complex frequencies (energies) below
the real axis, and do not correspond to physical steady-
state solutions, although they can still strongly influence
the scattering properties for real frequencies [20–22]. By
adding gain to an electromagnetic cavity one may bring
the resonant EP to a real frequency, corresponding to las-

ing at threshold. But an amplifying system is not ideal
for the study of EPs, due to the large amplified spon-
taneous emission noise at threshold, and the necessity
of including the non-linearity of the medium to stabilize
lasing above threshold.

Scattering EPs are EPs of S and have mainly been
studied in systems with balanced loss and gain (PT sym-
metry and related variants), where the scattering eigen-
channels make a transition from flux-conserving to ampli-
fying or attenuating propagation [23–25]. In addition, in
one dimensional PT -symmetric systems, one can define
a permuted S-matrix, with a scattering EP at the fre-
quencies at which the system has unidirectional (reflec-
tionless) resonances [24, 26, 27]. These scattering EPs
do not generate the anomalous scattering lineshapes or
asymmetric state transfer of resonant EPs, nor do they
enable the chiral absorption of the absorbing type of reso-
nant EPs identified below. Typical eigenstates of S have
both incoming and outgoing components, and hence are
not resonances of the system.

Here we study a new kind of EP, the coalescence of
two solutions of the wave operator with purely incom-

ing boundary conditions, corresponding to perfect absorp-
tion. When a single such wave solution occurs at a real
frequency, it is an example of Coherent Perfect Absorp-
tion (CPA) [28–34], a variant and generalization of the
concept of critical coupling [35], in which a particular
steady-state incident wavefront is completely absorbed.
The specific input state is the time-reverse of the thresh-
old lasing mode for the same cavity, but with gain re-
placing loss [n(~r) → n∗(~r)]. Achieving CPA typically
requires tuning the input frequency and the degree of ab-
sorption. With no gain or loss, the frequencies of purely
incoming/outgoing states occur in conjugate frequency
pairs, ωn ± iγn; the addition of material loss is neces-
sary to move the frequency of a purely incoming state
onto the real axis to achieve CPA. Here we study a CPA
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EP, where two incoming solutions of the wave equation
coalesce at a real frequency. The degeneracy of two eigen-
frequencies of the incoming wave operator is generically
a CPA EP. Exceptions occur for degenerate but decou-
pled states, e.g. those with different symmetry [31]; these
cases will be neglected here. Such absorbing EPs have
not been studied before, but should be readily observ-
able with set-ups previously used to investigate resonant
EPs [20, 36, 37].

The signature of CPA EP in scattering is a quartic
behavior (flattening) of the absorption lineshape in the
perfectly absorbed channel (see Fig. 1a-f); for ordinary
CPA it is quadratic. The perfectly absorbed input chan-
nel corresponds to an eigenvector of S with eigenvalue
zero. To our knowledge, any modification of a lineshape
associated with an EP has not been previously observed.
The quartic behavior generalizes to higher dimensional
and/or multichannel, quasi-1D CPA EPs as well; but only
in the CPA eigenchannel, and not in the individual scat-
tering coefficients or other eigenchannels (see Fig. 1d).
Its origin can be understood as follows: near an ordinary
CPA frequency ω0, an eigenvalue of S, σ(ω), will pass
through zero linearly in the deviation δ ≡ ω−ω0, so that
|σ(ω)|2 ∝ δ2. In the vicinity of the parameter values
leading to CPA EP, there are two CPA frequencies near
each other (ω0 + δ1 and ω0 + δ2), both belonging to the
same eigenvalue σ(ω), whose smooth variation implies
σ(ω) ∝ δ1δ2. At CPA EP, δ1 → δ2 ≡ δ, and |σ|2 ∝ δ4,
which is the quartic absorption lineshape. The other
conceivable behavior, where distinct S-matrix eigenval-
ues meet at zero, does not correspond to CPA EP, but
rather to an EP of S; the smoothness assumption used
above is violated and the lineshape is not quartic.

The general properties described above are exemplified
by a one-dimensional electromagnetic structure, consist-
ing of two cavities created by a series of three mirrors (see
Fig. 1a-i). An EP is realized by coupling the two cavi-
ties via a central partially reflecting Bragg mirror and
introducing unequal absorption within each cavity. We
show three interesting cases. In Fig. 1a-c, the structure is
terminated on the right by a perfect mirror and is accessi-
ble only from the left through a partial Bragg mirror, so
that S is a scalar, namely, the left reflection amplitude rL.
The absorption is 1 − |rL|

2. This set-up corresponds to
the usual critical coupling to a cavity (one-channel CPA),
except that the cavity is tuned to an EP of the incom-
ing wave operator and hence the absorption lineshape is
quartic. On the other hand, in Fig. 1d-f, the Bragg mir-
rors on the two ends are both permeable and define a
two-channel S-matrix, characterized by three scattering
amplitudes rL, rR, t. Here, exciting the absorbing eigen-
channel of S requires coherent illumination from both
sides with a definite relative intensity and phase [28]. As
shown in Fig. 1d, the quartic absorption lineshape is ev-
ident for this input state; however neither the one-sided
scattering coefficients (|rL|

2, |rR|
2, |t|2), nor the non-zero
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FIG. 1. (Color online) Scattering from coupled cavity struc-
tures at CPA EP for asymmetric (a-f) and symmetric (g-i)
end mirrors. (a,d,g) Absorption lineshapes of eigenchannels
(solid): CPA channel (blue) reaches 100% absorption at the
EP frequency ω0. In (a,d) CPA lineshape is quartic [see (c)],
while in (d) non-CPA channel (red) is quadratic. In (g) we
have an EP of S and the lineshape isn’t quartic. Scattering co-
efflcients |rL|

2, |rR|
2, |t|2 are shown as green, blue, red dashed

lines; in (g) they become degenerate at ω0, as predicted for
an EP of S-matrix at zero. (b,e,h) Schematics of structures:
cavities (red) with lengths L1, L2, and unequal absorption,
emitting to free space through end mirrors. Right mirror is
perfect in (b), permeable but unequal to left in (e) and equal
to left in (h); parameter values are given in supplement S1.
(f,i) CPA EP modes: generic case of unequal coupling (f)
yields asymmetric asymptotic values for |ψ|2, implying S not
at EP. The CPA mode for non-generic case of equal coupling
(i) has equal asymptotic values, implying that S is at an EP.

eigenchannel exhibit such a flat-top profile.
While Fig. 1a-f describe the generic scattering behav-

ior near a CPA EP, there is a novel and interesting non-
generic case, exemplified by Fig. 1g-i, which can be real-
ized in the same type of geometry, and does not show the
generic quartic lineshape, but has different and striking
scattering properties. This is a case where CPA EP and
an EP of the S-matrix approximately coincide. Hence
we now discuss the relationship between exceptional be-
havior of the wave operator and of S.
Every eigenstate of the wave operator with incoming

boundary conditions also corresponds to an eigenvector
of S with eigenvalue zero. However, the coalescence of
two incoming states does not simultaneously generate an
EP of S, as we now prove.
For simplicity, consider an arbitrary one-dimensional

cavity described by the Helmholtz equation:

{∇2 + ε(x)k2j }ψj(x) = 0, (1)

where ε(x) is the dielectric function of the medium,
kj = ωj/c, and ωj are the discrete complex eigenfrequen-
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cies with purely incoming boundary conditions. Consider
two eigenfrequencies, ω1, ω2, initially with different val-
ues and linearly independent solutions, ψ1(x), ψ2(x). Fur-
ther assume that tuning ε(x) causes these two solutions
to coalesce at ω0: ψ1, ψ2 → ψ0. By using the wave equa-
tion (1) and taking the limit ω1 → ω2 ≡ ω0, one can
derive the identity (see supplement S2 [38])

−2iω0

∫

cav

dxψ0(x)ε(x)ψ0(x) = c0 ŝ0 · ŝ0, (2)

where ŝ0 is the normalized eigenvector of the S-matrix
corresponding to ψ0 (i.e. with eigenvalue zero), and c0 is
a system-specific constant. The integral on the left hand
side of Eq. (2) in general does not vanish. Solutions of the
wave equation with either purely incoming or outgoing
boundary conditions do not satisfy any simple biorthog-
onality relation over the scattering region [2, 39]. Hence
at an EP of the incoming wave operator, integrals of this
type are non-zero (see supplement S2 for discussion of
EP self-orthogonality in open systems). On the other
hand, the RHS of Eq. (2) is proportional to the biorthog-
onal norm of the eigenvector of the symmetric S-matrix
with eigenvalue zero; as such it vanishes iff S is also at an
EP [40]. A non-vanishing LHS implies that CPA EP does
not in general correspond to an EP of S; indeed for the
generic case shown in Fig. 1d-f the S-matrix has a sec-
ond eigenvector which is not perfectly absorbed at CPA
EP (red solid line), and hence has non-zero scattering.
This proof generalizes to higher dimensional scattering
geometries using Green’s theorem.
Conversely, one can find scattering geometries and

structures for which an EP of S can occur for eigenvalue
equal to zero; however this does not in general imply CPA
EP. The EP of S at zero is a specific case of a scattering
EP of the type mentioned above [23–25]; we discuss its
implications briefly below. The general case of scattering
EPs will be discussed elsewhere [41].
A 2×2 S-matrix with zero eigenvalue, tuned to an EP

at frequency ω0, satisfies rL(ω0) = −rR(ω0) = ±it(ω0).
Hence all the scattering coefficients are equal at ω0:

|rL(ω0)|
2 = |rR(ω0)|

2 = |t(ω0)|
2. (3)

This signature of an EP of S at zero can thus be observed
simply with standard one-sided reflection and transmis-
sion measurements. The scattering behavior of the struc-
ture shown in Fig. 1g-i shows precisely the triple degener-
acy of the scattering coefficients characteristic of an EP
of S at zero (Eq. 3). This is initially surprising, since its
parameters were chosen to be at CPA EP, not at an EP
of S. The structure differs from that of Fig. 1e only by
the imposition of identical Bragg end mirrors.
To understand why for this structure CPA EP and an

EP of S coincide we use temporal-coupled mode theory
(TCMT) [42], which provides an analytic but approx-
imate relationship between the eigenfrequencies of the

wave operator and the S-matrix. Within TCMT one can
show (supplement S3) that when the two cavities have
equal out-coupling rates, CPA EP does imply a simulta-
neous EP of the S-matrix; but not when the cavities have
unequal out-coupling rates. Thus, essentially the same
experimental set-up can test the properties of these two
different types of absorbing EPs. If the TCMT theory
were exact, the two eigenvalues of S would coincide pre-
cisely at ω0 and would not be analytic there, leading to
a complicated, non-quartic behavior near CPA. Due to
the approximate nature of TCMT, we find a slight dis-
placement of the EP of S from CPA EP, not visible in
the results of Fig. 1g.

Returning to generic CPA EP, we now explore higher
dimensional structures, both in free space and guided
wave geometries. For the case of resonant EPs, there
has been extensive study of perturbed and deformed
disk resonators in 2D, for which the EP of whisper-
ing gallery modes (WGMs) directly implies a spatially
chiral solution, corresponding to either clockwise (CW)
or counterclockwise (CCW) circulations of waves in the
disk [17, 18, 43]. These strongly chiral resonances
have been probed experimentally through asymmetric
backscattering and chiral laser emission [19]. We now
show that CPA EP in such a system will lead to chiral
absorption: perfect absorption for, e.g. CCW input, and
substantial backscattering for CW. We note that stan-
dard CPA in disk and sphere resonators has been studied
previously [30, 34].

We first consider an example of chiral absorption in
free space, adapting the Wiersig model of a dielectric disk
perturbed by two point scatterers [17], with parameters
chosen to realize an absorbing EP at a real frequency (see
supplement S1). The perturbation from the first point
scatterer splits the degenerate WGMs at angular mo-
menta m = ±q into two standing-wave resonances, and
fine-tuning the perturbation due to the second scatterer
brings these two resonances back to degeneracy, forming
an EP with CCW chirality at a complex frequency. Fi-
nally, introducing a critical degree of absorption brings
the absorbing EP to a real frequency. As the scatterers
break the rotational symmetry of the structure, the CPA
EP input involves a coherent superposition of many an-
gular momenta other than ±q, although at significantly
weaker amplitude. For the example shown in Fig. 2, the
perfectly absorbed state has 80% of its incident flux at
q = 19, with the remaining 20% distributed across both
CW and CCW at other m’s. We test the chirality of
absorption by exciting the disk with the corresponding
CW input by exchanging cm ↔ (−)mc−m in the super-
position; whereas the original state is 100% absorbed,
the opposite chirality is only 83% absorbed. Moreover,
if we approximate the CPA input state by just its dom-
inant component (m = 19), both chiralities are equally
absorbed (81%).

The wavefront of the above free-space chiral CPA can
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FIG. 2. (Color online) Chiral CPA EP of WGMs of absorbing
microdisk perturbed by point scatterers. (a) CCW incident
CPA EP mode. Intensity plotted as color scale, curves of
constant phase (white), disk boundary and scatterers (blue).
Curvature of phase fronts shows sense of rotation, denoted by
arrow. Uniform intensity along rim indicates running wave
in disk. (b) Input fluxes carried in each angular momentum
channel for CPA EP (CCW) input. Dominant channel (de-
noted by star) carries 80% of flux; CPA input is > 99.9%
absorbed. (c) Total field (incident & scattered) for reverse
chirality input. Internal intensity shows standing wave os-
cillations due to presence of backscattering. (d) As in (b),
input fluxes (red), output (blue), for CW input. Here we find
∼ 1% scattering across many channels, giving a total of 17%
scattered flux (83% absorption).

be readily generated for acoustic waves, but an optical
implementation may be challenging. Therefore, we next
consider chiral CPA EPs that are coupled in through a
waveguide or fiber (see Fig. 3). To reach CPA with a
waveguide-only input, the free-space scattering loss rate
should be much smaller than the waveguide coupling rate.
Thus using point scatterers as tuning perturbations is un-
desirable, as they introduce additional scattering to free
space. Therefore instead of point scatterers, we introduce
an azimuthally varying grating on the real and imagi-
nary parts of the refractive index to promote the non-
hermitian asymmetric coupling via absorption loss. The
system is well-modeled by TCMT, taking into account
only the two single-mode running wave solutions in the
fiber and the CW and CCW angular momentum states
in the disk, coupled via the grating. This configuration
is similar to those used to study PT -symmetry breaking
and unidirectional invisibility in refs. [26, 37, 44–47], but
here we do not introduce any gain into the grating, only
variable loss and a varying real part of the index, with
no PT -like discrete symmetries (see supplement S4B).
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FIG. 3. (Color online) Chiral absorption from CPA EP
waveguide-microdisk system. (a) Reflection |rL|

2 (gray),
|rR|

2 (red solid), and transmission |t|2 (blue) for disk with
complex index azimuthal grating, tuned to CPA EP. TCMT
prediction (Eq. 4) for rR in dashed red. Inset: one-sided ab-
sorption spectrum for left illumination (green) and right (red).
(b) Intensity of total field (incident & scattered) for left illu-
mination, corresponding to CPA EP. (c) Same as (b) but
for right illumination. Note standing wave of (c) vs running
wave of (b) indicates strong coupling between CW and CCW
modes only for right incidence, causing chiral absorption.

The dielectric grating in Fig. 3 has a separable form
δε = ρ(r)τ(θ)ε0 and couples WGMs with angular mo-
menta m = ±q via azimuthal Fourier components τ±2q,
where τ(θ) =

∑

n τne
inθ (ε0 is the dielectric function of

the disk without the grating). To achieve EP, one of the
±2q components must vanish while the other remains fi-
nite (see supplement S4A), which can only occur with a
complex index grating. With the grating choice in Fig. 3,
τ−2q = 0, implying that the right propagating (CW) in-
put at CPA EP will be strongly absorbed with negligi-
ble reflection, while τ2q 6= 0 will cause partial reflection
of the left propagating (CCW) input. Experimentally
relevant gratings are piecewise constant, and in the sim-
plest case have real and imaginary parts with the same
angular width φ and periodicity 2π/P , and an angular
offset χ between them. In this case, we show in the sup-
plementary material (S4B) that an EP for WGMs with
m = ±q is achieved when the real and the imaginary
gratings have the same modulation magnitude, offset
χ = (M − 1/4)π/q, and where P divides 2q (M,P ∈ Z).
Critically coupling the waveguide to the disk yields the
desired CPA EP, with rL(δ) = 0 and

t(δ) =
δ

δ + iΓ
, |rR(δ)|

2 =

(

sin qφ

qφ

)2
1

(1 + δ2/Γ2)2
,

(4)
where δ = ω − ω0 is the detuning from the CPA EP fre-
quency, and Γ is the HWHM of the dip in |t2|. Note
that to maximize reflection from the right (and mini-
mize absorption), thinner lines of the grating are bet-
ter, as this allows the standing wave to align its nodes
with the narrower absorbing regions. The reflection line-
shape is a squared Lorentzian [48], while the transmis-
sion lineshape remains Lorentzian (supplement S4A). As
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expected, the eigenchannel of S (which is two-sided ex-
cept at ω0) exhibits a quartic lineshape (not shown).

If we turn now to the results of the exact
finite-difference frequency-domain numerical calculations
(Fig. 3), we see that indeed the absorption in this geom-
etry is strongly chiral, being > 97% when the disk reso-
nance is excited from the left (CW excitation), but< 10%
when it is excited from the right (CCW excitation),
the difference appearing predominantly as backscattering
into the waveguide as expected, and in good agreement
with the TCMT model. Note that the 2.7% of the input
which is not absorbed for the CW excitation is removed
by free space radiation and the CW reflection is truly
negligible (supplement S5).
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