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We study the thermal evolution of a highly spin-imbalanced, homogeneous Fermi gas with unitar-
ity limited interactions, from a Fermi liquid of polarons at low temperatures to a classical Boltzmann
gas at high temperatures. Radio-frequency spectroscopy gives access to the energy, lifetime and the
short-range correlations of Fermi polarons at low temperatures T . In this regime we observe a
characteristic T 2 dependence of the spectral width, corresponding to the quasiparticle decay rate
expected for a Fermi liquid. At high T the spectral width decreases again towards the scattering
rate of the classical, unitary Boltzmann gas, ∝ T−1/2. In the transition region between the quan-
tum degenerate and classical regime, the spectral width attains its maximum, on the scale of the
Fermi energy, indicating the breakdown of a quasiparticle description. Density measurements in a
harmonic trap directly reveal the majority dressing cloud surrounding the minority spins, and yield
the compressibility along with the effective mass of Fermi polarons.
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Landau’s Fermi liquid theory provides a quasiparti-
cle description of the low-temperature behavior for a
large class of unordered fermionic states of matter, in-
cluding most normal metals, atomic nuclei and liquid
helium-3 [1]. Strongly interacting Fermi gases with highly
imbalanced spin populations have been identified as be-
longing to the same class [2–14]. The quasiparticles in
spin-imbalanced Fermi gases are Fermi polarons: spin im-
purities dressed by an excess cloud of majority fermions.
The stability of quasiparticles in a Fermi liquid is a conse-
quence of the restricted phase space for collisions due to
Pauli blocking. With increasing temperature T , the ac-
cessible phase space increases, and the lifetime of quasi-
particles shortens, leading to the breakdown of Fermi
liquid theory. In this intermediate temperature regime
the gas is neither a Fermi liquid nor a classical Boltz-
mann gas. For strong interactions, this regime is void of
well-defined quasiparticles and controlled by the quan-
tum critical point of the unitary, spin-balanced gas at
zero chemical potential and temperature [15–17].

Ultracold Fermi gases offer a unique opportunity to
study the crossover from a low-temperature Fermi liquid
to a classical Boltzmann gas, due to the large accessible
temperature range. In spin-imbalanced Fermi gases, the
two inequivalent Fermi surfaces provide additional rich-
ness. As the temperature is lowered from the classical
regime, the Fermi surface of the majority forms first, giv-
ing minority spins the quasiparticle character of polarons.
At even lower temperatures, the polarons themselves be-
come quantum degenerate and form a Fermi surface.

In this work, we access the entire crossover from degen-
erate polarons to the classical Boltzmann gas through
the quantum critical region. The internal properties of
the polaronic quasiparticles are measured via radio fre-
quency (rf) spectroscopy [10, 18–20] on a homogeneous

Fermi gas [21, 22]. At low temperatures the peak position
and width of the rf spectra reflect energy and decay rate
of the polarons. Note that the decay rate of a quasiparti-
cle can be viewed as the rate of momentum relaxation in
a transport measurement (see e.g. [7]). The wings of the
rf spectra yield information about the short-range cor-
relations and the contact [23–27], controlling the change
in the polaron energy with interaction strength. Further
thermodynamic properties of the polaron gas are directly
obtained from in situ density profiles in the presence of a
harmonic potential [6, 12, 13, 28–30], revealing the num-
ber of atoms in the majority dressing cloud of a polaron.
The compressibility of the impurity gas at low tempera-
ture yields the effective mass of Fermi polarons.

For the spectroscopic studies we employ rf ejection
spectroscopy, where the many body state is first prepared
and then probed by transferring a small fraction of one
spin component into a weakly or non-interacting final
state. Rf ejection spectroscopy has been used to, e.g.,
measure interactions, correlations, pairing phenomena in
Fermi gases [31, 32] and more specifically the binding
energy of the attractive Fermi polaron at low tempera-
tures [10, 19]. A prerequisite for our measurements is a
spatially uniform box potential. This avoids the spec-
tral broadening caused by an inhomogeneous density
and impurity concentration [21, 33]. The three energet-
ically lowest hyperfine states of 6Li (labelled |1〉 = |↓〉,
|2〉 = |f〉, |3〉 = |↑〉) are utilized to create and probe the
strongly interacting spin mixture. The minority (impu-
rity) and majority components are prepared in |↓〉 = |1〉
and |↑〉 = |3〉, and transferred via the rf drive into the
final state |f〉 = |2〉 [33, 34]. All measurements have been
performed at a magnetic field of 690 G, where the interac-
tions between minority and majority atoms are unitarity
limited. Final state interactions are weakly repulsive with



2

(a)

1 20-1

0

1

2

3

0.08

0.99

1.51

1.85

0.27
0.50
0.74

1.22

-1.5

-1.0

-0.5

0.0

0.5

0

3

0.0

0.5

1.0

1.5

2.0

0 0.5 1 1.5 2

(b)

(c)

FIG. 1. (a) Thermal evolution of the minority rf spectra. The impurity concentration is n↓/n↑ = 0.10±0.03, the Rabi frequency
ΩR = 2π · 0.5 kHz and the pulse duration TPulse = 1 ms. (b) 2D plot of the minority spectra with maxima highlighted by white
points. To reflect the energy of the initial many-body state, the spectra are shown with the inverse frequency E−/EF↑, where
E− = −~ω. The cross corresponds to the theoretical zero temperature result for the polaron energy, including a correction for
final state interactions [3–5, 8, 35]. (c) FWHM of the rf spectra. Dotted line: Fourier resolution limit; dashed red line: single-
polaron decay rate Γ/EF↑ = 2.71(T/TF↑)

2 [7], offset by the Fourier limit; dash-dotted black line: FWHM of the rf spectrum in

the high-temperature limit Γ/EF↑ = 1.2
√
TF↑/T [40, 41], reflecting the scattering rate in the classical, unitary Boltzmann gas.

For the errors in (b) and (c) see [33].

kF↑a↑f . 0.2 (a↑f = 62 nm). The impurity concentration
(minority to majority density ratio n↓/n↑) is controllably
varied between 10% and 30%.

The rf response is linked to the probability that a hole
of energy E and momentum p is excited by ejecting a
particle from the many-body state, as described by the
occupied spectral function A−↓(p, E) [10, 32, 35, 36]. De-
tecting a free particle of momentum p after rf transfer im-
plies a momentum p and energy Ep = p2/2m− µ↓ − ~ω
of the leftover hole, where µ↓ is the minority chemical po-
tential and ~ω the energy of the rf photon with respect to
the non-interacting transition. The number of transferred
minority atoms Nf (ω) is proportional to the momentum
integral of the occupied spectral function A−↓(p, Ep).
Fermi liquids feature a spectral function that is sharply
peaked around ε0 +p2/2m∗−µ↓, with the effective mass
m∗ and dressed energy ε0 of the quasiparticles. The width
of the peak is determined by the quasiparticle decay rate
Γ(p, T ). For low temperatures and impurity concentra-
tions only low-momentum states are populated and the
peak position of the rf spectrum corresponds to the po-
laron binding energy [10].

Fig. 1(a) shows the evolution with temperature of the
rf spectra. Here, we have defined the normalized transfer
I(ω) = (Nf(ω)/N↓)(EF↑/~Ω2

RTPulse), with the number of
particles in the final (initial) state Nf (N↓), the pulse
duration TPulse and the single particle Rabi frequency

ΩR. The term Ω2
RTPulse originates from the linear re-

sponse to the rf pulse. The factor EF↑/~ in I is owed
to the scale invariance of the unitary Fermi gas, which
implies that its spectral features, such as the peak posi-
tion, amplitude and width directly scale with the Fermi
energy [31, 32]. The normalized transfer only depends on
the dimensionless parameters T/TF↑, n↓/n↑ and ~ω/EF↑,
apart from small corrections due to final state interac-
tions and Fourier broadening that break the scale invari-
ance of the system. The energy of the gas is measured by
an isoenergetic release from the uniform to a harmonic
trap. After thermalization, the in-trap size reveals the
energy, from which we obtain the temperature via the
equation of state [33].

In the deeply degenerate limit (T/TF↑ < 0.1) we
observe a sharply defined resonance [Fig. 1(a)] signal-
ing the stable, long-lived Fermi polaron [10]. Its width,
defined by the full width at half maximum (FWHM),
is limited by the Fourier resolution. From the position
of the spectral peak at low temperature [Fig.1(b)] and
correction for weak final state interactions as in [10],
we obtain a zero temperature polaron binding energy
A ≡ ε0/EF↑ = −0.60± 0.05, with a linear extrapolation
of the peak positions below T/TF↑ = 0.3.

With increasing temperature the spectral peak initially
shifts to higher frequencies and broadens significantly
[Fig. 1(b) and (c)]. A rise in the polaron binding energy
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with temperature is expected given the increased scatter-
ing phase space of the majority spins, and is found theo-
retically [37, 38]. However, note that the position of the
maximum at finite temperature and impurity concentra-
tion is influenced by the density of states, the difference
in the effective mass between initial and final state [20]
and the thermal population of momentum states. At a
temperature near T/TF↑ ≈ 0.75 a sharp jump in the
position of the global maximum to ω ≈ 0 is observed
[Fig. 1(a) and (b)] [39]. In this regime, the width of the
spectra reaches its maximum [Fig. 1(c)], on the order of
the Fermi energy. Beyond this temperature, the position
of the maximum remains constant at ω ≈ 0, as expected
theoretically [40, 41]. It reflects a merging of attractive
and repulsive branches, symmetric about zero on reso-
nance [42], as the temperature exceeds their splitting.

The spectral function of a Fermi liquid is a single
Lorentzian peak with a width given by the decay rate
of the quasiparticles [1]. The width of the rf spectra is
dominated by this decay rate at low temperatures. We
observe a quadratic scaling of the width at low temper-
atures, a hallmark of Fermi liquid theory, in agreement
with a theoretical calculation [Fig. 1(c)] [7]. In the quan-
tum critical regime around T ≈ TF↑, the lifetime of the
polarons drops below the Fermi time (h/EF↑), signaling
a breakdown of quasiparticles [15–17]. The decrease in
width at temperatures beyond the Fermi temperature is
expected for a classical Boltzmann gas with unitarity lim-
ited interactions. The thermal scattering rate in the di-
lute impurity limit is given by Γth = n↑σthvth ∼ 1/

√
T ,

with the thermal velocity vth ∼
√
T , and the unitarity

limited scattering cross section σth ∼ λ2 ∼ 1/T .
Apart from energies and lifetimes, rf spectra also

directly yield the strength of short-range correlations,
quantified by contact C [Fig 2(a)] [24–27, 31, 43, 44].
The contact is a central quantity in a set of universal re-
lations, linking microscopic properties to thermodynam-
ics, which apply to all many-body systems with contact
interactions [23]. It governs the tail of the momentum dis-
tribution, short-range pair correlations and the change in
energy with interaction strength [27, 31, 32]. As the con-
tact is a measure of pair correlations, the tails of the rf
spectrum of the minority and majority components are
identical. For unitarity limited interactions the fraction
of transferred atoms in the high frequency limit is given
by [27]

I(ω) =
ω→∞

C

2N↓kF↑

1

2
√

2π (1 + ~ω/Eb)

(
EF↑

~ω

)3/2

, (1)

where Eb = ~2/ma2
↑f ≈ h ·433 kHz. The inset of Fig. 2(a)

shows the corresponding fit of the tails with Eq. (1), leav-
ing only the contact as a free parameter.

The temperature dependence of the contact displays
a non-monotonic behaviour with a maximum located
around T ≈ 0.4TF↑ [Fig. 2(b)]. The observed initial rise
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FIG. 2. Contact of the spin-imbalanced Fermi gas. (a) Typical
rf spectra of the spin minority (blue circles) and majority (red
squares). The impurity concentration is 10%. The inset shows
the high frequency tails of the minority and majority spectra
together with a fit of Eq. (1). (b) Contact as a function of
temperature, obtained by measuring the transferred fraction
of atoms as a function of rf pulse duration for frequencies
~ω/EF↑ > 5.5 and use of Eq. (1). The gray dashed line shows
the third order viral expansion [47] and the cross the result
from the Chevy ansatz [3, 45].

in temperature is partially expected from the increase
in scattering phase space and has also been found theo-
retically in a spin-imbalanced few-body calculation of the
contact [46]. In the high-temperature limit, the contact is
proportional to the scattering cross section and vanishes
as 1/T .

The contact quantifies short-range correlations. How-
ever, the polaron is an extended object with pair correla-
tions extending out over distances even beyond the ma-
jority interparticle spacing [48]. We thus set out to probe
the entire cloud of excess majority atoms surrounding the
impurity spin of density ∆n↑ = n↑(µ↑, µ↓, T )−n0(µ↑, T )
by in situ density measurements [Fig. 3 (a)]. Here,
n↑(µ↑, µ↓, T ) is the actual, measured density of the in-
teracting majority component and n0(µ↑, T ) corresponds
to the density of a non-interacting gas with the same
temperature and majority chemical potential. For this
measurement we use a hybrid trapping potential which
is harmonic along one direction and uniform along the
other two axes [21]. This trapping geometry gives direct
access to the density of each spin component as a func-
tion of the trapping potential U [Fig. 3(a)]. Under the lo-
cal density approximation the knowledge of n↑,↓(U) can
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FIG. 3. Observation of the majority excess cloud. (a) Den-
sity profiles in a harmonically varying external potential U .
Blue (red) data points indicate the profiles of the minority
(majority) spin component. The normalized temperature of
the gas is T/TF↑ = 0.07 in the trap center (U = 0). The
green dashed line represents the equation of state of the ideal
Fermi gas, the red (blue) solid line is the Fermi liquid ansatz
(Eq. (3)) for the majority (minority) component. The red
shaded area displays the excess majority density ∆n↑. Inset:
Dependence of the excess majority to minority ratio on the
impurity concentration. (b) Temperature dependence of the
majority excess cloud. Data points show the excess majority
density ∆n↑ for an impurity concentration of n↓/n↑ = 0.1
(squares), n↓/n↑ = 0.2 (triangles) and n↓/n↑ = 0.3 (cir-
cles). The cross indicates the low-temperature prediction of
the Fermi liquid ansatz ∆n↑/n↓ = −A = 0.615 [8] and the
dashed line the third order virial expansion.

be used to extract a variety of thermodynamic quanti-
ties [12, 13, 30, 33]. The majority chemical potential and
temperature are obtained from the low-fugacity wings of
the gas. In the case of a partially spin polarized wing
we use the third order virial expansion [47], whereas
for a fully spin polarized wing we use the ideal equa-
tion of state. For the lowest temperatures the excess ma-
jority density per minority atom is ∆n↑/n↓ = 0.63(5)
[Fig. 3(b)]. For increasing temperature the excess den-
sity drops until it reaches the value predicted by the
virial expansion for the density. ∆n↑/n↓ displays no de-
pendency on the minority concentration within our error
up to n↓/n↑ = 0.3.

To elucidate the origin of the excess density from ther-
modynamics, we model the total pressure of the system
as:

P (µ↑, µ↓, T ) = P0(µ↑, T )+

(
m∗

m

) 3
2

P0(µ↓−Aµ↑, T ). (2)

Here, P0(µ, T ) is the pressure of the non-interacting
Fermi gas. The ansatz describes the total pressure of the
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FIG. 4. Isothermal minority compressibility. The solid line is
the Fermi liquid ansatz for m∗/m = 1, while the dashed line
corresponds to a fit with an effective mass of m∗/m = 1.25(5)
assuming A = −0.615 [8]. The grey shaded area represents
the standard deviation of the fit. For the entire range of tem-
peratures displayed the majority component is degenerate
(T/TF↑ < 0.2).

system as the sum of the partial pressure of the non-
interacting majority component and the partial pressure
of an ensemble of polarons with an effective chemical po-
tential of µ↓ − Aµ↑ and an effective mass m∗ [12, 13].
It contains weak interactions among the polarons that
amount to a few percent of the total energy of the system
[49]. From this pressure ansatz the density can be calcu-
lated with the Gibbs-Duhem equation at constant tem-
perature and scattering length (dP = n↑dµ↑ + n↓dµ↓):

n↑(µ↑, µ↓, T ) = n0(µ↑, T )−An↓(µ↑, µ↓, T ),

n↓(µ↑, µ↓, T ) = (m∗/m)
3
2 n0(µ↓ −Aµ↑, T ), (3)

where n0(µ, T ) ≡ ∂P0/∂µ is the density of the non-
interacting gas. Each minority is accumulating on average
|A| = 0.6 excess majority atoms over the non-interacting
limit, in agreement with our measured value [Fig. 3(b)].

Since the Fermi liquid ansatz describes the ther-
modynamics accurately in the low temperature regime
T/TF↑ < 0.2, we now focus on this temperature regime
and utilize the ansatz to determine the effective mass
of the polarons from a measurement of the minority
compressibility. In analogy to the total compressibil-
ity of the gas the normalized isothermal minority com-
pressibility is defined as κ̃↓ ≡ −dEF↓/dUeff [30]. Here,
Ueff = (1−A)U is the effective potential of the minority
component generated by the interaction with the ma-
jority component [4, 11]. Using Eq. (3) for the minority
density one finds

κ̃↓ (T/TF↓) =
m∗

m

κ0 (T, TF↓ ·m∗/m)

κ0 (0, TF↓ ·m∗/m)
, (4)

where κ0 (T, TF↓) ≡ n−2
0 (∂n0/∂µ)T is the compress-

ibility of the non-interacting Fermi gas at fixed den-
sity. Fig. 4 shows the measured isothermal compress-
ibility of the minority component. A fit of Eq. (4) fix-
ing A = −0.615 [8] results in an effective mass of
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m∗/m = 1.25(5), which is in agreement with results
obtained from diagrammatic Monte Carlo [8], a varia-
tional ansatz [5] and previous low-temperature experi-
ments [11–13]. The saturation of the minority compress-
ibility at low temperatures signals the formation of a de-
generate Fermi sea of polarons.

In conclusion, we have studied the temperature de-
pendence of a highly spin-imbalanced unitary Fermi gas
with rf spectroscopy and in-trap density profiles. When
the majority component is degenerate (T/TF↑ � 1) long
lived quasiparticles emerge. In the spirit of Fermi liquid
theory these polarons behave like a weakly-interacting
Fermi gas forming a sharp Fermi sea for T/TF↓ � 1.
The weakly-interacting character of the quasiparticles is
also reflected in the independence of the majority dress-
ing cloud on the impurity concentration. In the oppos-
ing high-temperature regime the gas is accurately de-
scribed as a classical Boltzmann gas. At intermediate
temperatures (T ≈ TF↑) the quasiparticle description
breaks down. The spectral features of the attractive po-
larons dissolve, merging with excited branches such as
dressed dimerons [8, 45, 50] and repulsive polarons [18–
20, 35, 50, 51].
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