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We propose and implement a novel, robust, and non-parametric test of statistical isotropy of the
expansion of the universe, and apply it to around one thousand type Ia supernovae from the Pantheon
sample. We calculate the angular clustering of supernova magnitude residuals and compare it to the
noise expected under the isotropic assumption. We also test for systematic effects and demonstrate
that their effects are negligible or are already accounted for in our procedure. We express our
constraints as an upper limit on the rms spatial variation in the Hubble parameter at late times.
For the sky smoothed with a Gaussian with FWHM = 60◦, less than 1% rms spatial variation in
the Hubble parameter is allowed at 99.7% confidence.

Introduction. The simplest inflationary-cosmology sce-
narios [1–4] generically predict that the expansion of the
universe is isotropic. However, violations of statistical
isotropy can certainly be accommodated in models with
additional complexity (e.g. [5–7]) and even perturbative
effects on the expansion rate in the standard cosmolog-
ical model (which are, however, expected to be small,
e.g. [8, 9]). While tests of statistical isotropy of the early
universe have typically been carried out by analyzing the
cosmic microwave background anisotropy maps (e.g. [10–
14]), it is well worthwhile to investigate the isotropy of
the late-time universe. The latter is particularly inter-
esting given the lack of a fundamental understanding of
the physical nature of dark energy that powers the accel-
erated expansion of the universe.

In this paper we present a novel test of the isotropy of
cosmic expansion and apply it to current type Ia super-
novae (SNIa) data. While an investigation of the isotropy
of the universe using SNIa data has been carried out by
numerous previous works [15–35], our methodology (de-
scribed below) extends these efforts. Our approach is
parameter-free, robust, and explicitly independent of as-
sumptions about the distribution of the data. We now
describe the data we use, our methodology, and present
the results along with estimates of the effects of system-
atic errors.

Data. For our analysis, we use the “Pantheon” compi-
lation of SNIa [36]. The Pantheon sample combines 279
SNIa (0.03 < z < 0.68) from the Pan-STARRS1 Medium
Deep Survey with SNIa from Sloan Digital Sky Survey
(SDSS), SuperNova Legacy Survey (SNLS), and vari-
ous low-z and Hubble Space Telescope samples to pro-
duce a SNIa sample of 1048 objects in the redshift range
0.01 < z < 2.26. The Pantheon sample was produced
using the PS1 Supercal process [37], which determined a
global calibration solution to combine 13 different SNIa
samples. The latter analysis also corrects for expected
biases in light-curve fit parameters and their errors using
the method outlined in Ref. [38].

Methodology. The SNIa data consists of individual
magnitude measurements mi ≡ m(zi, n̂), where zi is the

FIG. 1. Mollweide-projection map of SNIa magnitude residu-
als, defined in Eq. (1), in Galactic coordinates and at HEALPix
resolution Nside = 16. Each pixel contains the average of the
residuals of SNIa that fall in it. The inset shows the histogram
of the SNIa residuals.

redshift of a supernova in the CMB frame and corrected
for peculiar velocities [36], and n̂ is its location on the sky.
The individual SNIa magnitude errors σi are generalized,
in modern SNIa analyses, to the full covariance matrix,
C = S + N, where S and N are the signal and noise
matrices, respectively. The noise matrix encodes statis-
tical magnitude measurement errors and covariances due
to unknown fit parameters that correlate the measure-
ments, such as the color and stretch. The signal ma-
trix is nonzero at low redshift because, roughly speaking,
nearby SNIa are pulled by the same structures, result-
ing in correlated peculiar velocities. At high redshift the
signal matrix is nonzero mainly because of the effects of
lensing on SNIa magnitudes.

We work with SNIa magnitude residuals divided by
individual statistical errors

ri ≡
mi −mth

i

σi
(1)

where mth
i = 5 log10[H0dL(zi,ΩM )] +M is the theoreti-

cally expected magnitude for an object at redshift zi and
a given value of the matter density relative to critical
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FIG. 2. Illustration of the process to estimate the noise and
its uncertainty in our measurements. In each bootstrap, the
magnitude residual of each SNIa is replaced with one drawn
from the full set of SNIa residuals in the Pantheon sample. We
marginalize over the cosmological parameters by performing
this bootstrap analysis for values of ΩM and M drawn from
the joint posterior distribution of the cosmological analysis of
the Pantheon data.

ΩM , in the flat ΛCDM universe which we assume. Here
M is the nuisance parameter that combines the abso-
lute magnitude of SNIa with the Hubble constant H0.
The distribution of the residuals on the sky is shown in
Fig. 1; the inset in the Figure shows that the residuals
are approximately Gaussian-distributed.

The goal of this study is to put an upper limit on
the value of the “signal” in the distribution of the SNIa
magnitude residuals caused by violations of statistical
isotropy. Since we are searching for the excess signal
with respect to statistical noise, we choose to normalize
the magnitude residuals in Eq. (1) by the diagonal sta-
tistical error σi, and not elements of the full (signal plus
noise) covariance C. Note that the statistical measure-
ment error constitutes the majority of the contribution to
the diagonal of the noise covariance, σ2

i ' 0.99Nii, thus
we are effectively dividing by the square roots of the lat-
ter. The total signal in the clustering of residuals also
has guaranteed contributions from the peculiar velocities
of the SNIa (which are correlated because the velocity’s
origin is the gravitational pull of the nearby large-scale
structures), and from the systematic uncertainty in the
precise values of the cosmological parameters ΩM andM
which are required to calculate mth(z). We demonstrate
below that these additional contributions to the signal
are very small compared to the noise level in the SNIa
data and can be ignored.

To estimate the signal power spectrum, we pixelate the

sky using the HEALPix [39] resolution parameter Nside.
Our fiducial analysis is done at Nside = 16, though we
also compare with results at Nside = 8, 32, and 64, find-
ing good agreement. Each pixel has a side of roughly
60◦/Nside. Because more than one SNIa may lie in a
given pixel, we choose to take the average of the residu-
als in the pixel. Thus, the value of the jth pixel is given
by pj = (

∑
ri∈pj

ri)/nj , where nj is the number of SNIa

in that pixel and the sum goes over the residuals located
in the pixel. We now outline how the data power spec-
trum is computed and then discuss our noise estimation
approach.

To calculate the angular power spectrum of the map
of residuals, C`, we employ a pseudo-C` estimator which,
given the small sky coverage of the SNIa (at Nside = 16,
the fractional sky coverage is only fsky ' 0.07), is much
more practical than the maximum-likelihood estimators
which try to recover the full-sky signal. To get the
pseudo-C` we adopt the function anafast in HEALPix .
Given the significant variation of pixel occupancy by
SNIa, it is crucial to weight each pixel by the number
of objects in it; this guarantees that large-angle (low-`)
C` will not depend on the pixelation as long as the latter
is finer than the scales we wish to probe. Our angular
power spectrum is given by the usual pseudo-C` formula

C` =
1

2`+ 1

∑̀
m=−`

|a`m|2, (2)

with the harmonic expansion of the residuals that applies
weight to the pixels

a`m ≡
∫
r(n̂)W (n̂)Y ∗`m(n̂) d2n̂∫
W (n̂) d2n̂/(4π)

(3)

where the integral is typically discretized as the sum over
the pixels whose centers are in directions n̂ and which
have areas d2n̂. Here r(n̂) is the mean residual in a pixel
in the direction n̂, while the weight W (n̂) is given by
the number of objects in that pixel. The denominator in
Eq. (3) evaluates to fsky〈Wpix〉, where 〈Wpix〉 is the aver-
age number of SNIa per pixel. Note that the overall nor-
malization of the C` is not important for comparing the
angular spectrum of our sky to that of the bootstrapped
sample since the two have the same normalization, but
it is important when we quote limits on the statistical
isotropy of the expansion rate.

Having obtained the angular power spectrum of the
SNIa, we then produce the distribution of angular power
spectra that would be expected in an isotropic universe,
which in turn is given by the clustering noise and no
signal. Because the number of SNIa varies significantly
from pixel to pixel, the computation of noise in the an-
gular clustering of the SNIa is analytically intractable,
and would be so even under the simplified assumption
of Gaussian noise. To get a reliable upper bound on
the background anisotropy it is crucial to estimate the
clustering noise, as well as its uncertainty, directly from
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the data. To address this, we employ a simple, non-
parametric bootstrap approach whose principal advan-
tage is that the noise level can be directly estimated from
data. Additionally, this approach does not make assump-
tions about the statistical distribution of residuals, e.g.
whether it is Gaussian. At the location of each SNIa
we draw, with replacement, a residual from the distribu-
tion of the residuals of all SNIa. Having done this for all
SNIa, we have a randomized realization of the residuals
— hence one isotropic-universe bootstrap — which we
refer to as riso. To estimate the statistical uncertainty
due to the finite number of SNIa, we repeat this proce-
dure, which is illustrated in Fig. 2, 1,000,000 times. At
every 1,000-th bootstrap, we also draw the cosmological
parameters ΩM and M from their posterior distribution
obtained using our cosmological analysis of the Pantheon
SNIa, and then reevaluate the residuals. We do this to
account for the imperfect knowledge of these parame-
ters. Finally, we calculate the angular power spectrum
for each bootstrapped realization. This procedure pro-
duces a range of values of C` expected in an isotropic
universe for a discrete realization of SNIa.

Results. Figure 3 shows the angular power spectrum
of the pixelated SNIa average residuals; the black error
bars indicate the effect of the uncertain knowledge of cos-
mological parameters, corresponding to the uncertainty
in theoretical magnitudes mth

i . We also show the distri-
bution of C` of bootstrap rearrangements of residuals on
the sky: the dark thin red curve shows the mean value
of the C` due to noise and calculated from our million
bootstraps, while the yellow region around it shows the
68% uncertainty in this distribution. Here and in what
follows we show results for Nside = 16. We have checked
that our results are basically unchanged for Nside = 8,
32, and 64.

Figure 3 indicates that the angular power spectrum of
the Pantheon data appears consistent with the isotropic
assumption given by the bootstraps, which encode the
theoretical expectation of clustering noise and no signal.
A simple chi-squared test confirms this; we calculate the
quantity

χ2 =
(
C` − C̄boot

`

)
(M−1)``′

(
C`′ − C̄boot

`′
)
, (4)

where the sum over the multipoles is implied and where
C` and C̄boot

` correspond to the data and the mean
of the bootstraps respectively. The coupling matrix
M``′ = 〈(Cboot

` − C̄boot
` )(Cboot

`′ − C̄boot
`′ )〉 is calculated

directly from the bootstraps, and is non-diagonal be-
cause the SNIa do not cover the full sky. We find that
χ2/dof = 1.41 for a total of 48 degrees of freedom, be-
ing a little under the 2-σ level (the significance is even
smaller for other pixelations we looked at, Nside = 8, 32,
and 64). Therefore, the null hypothesis of an isotropic
expansion rate cannot be rejected, and this preliminary
test of the isotropy is passed. We now turn to a more
quantitative interpretation of our results.

We would like to get additional insight on how well our
data constrain the isotropy in an as model-independent
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FIG. 3. Angular power spectrum of SNIa magnitude resid-
uals in the Pantheon sample (black data points; errors show
the effect of uncertain cosmological parameters). The near-
horizontal thin red line shows the mean values of C` expected
due to statistical fluctuations (noise) in an isotropic-universe,
while the yellow region shows the 68% confidence interval un-
certainty in it. See text for details.

way as possible. To that effect, we consider a (redshift-
independent) fractional variation in the expansion rate
at z . 1

δH(n̂) ≡ δH

H
(n̂)� 1. (5)

Propagating it through to the magnitude and label-
ing the perturbed magnitudes with a tilde, it follows
that m̃i(n̂) = mi(n̂) + (5/ ln 10)[1 − δH(n̂)]. The vari-
ance of the residuals subject to such isotropy breaking,
〈(rdata)2〉, is then

〈(rdata)2〉 =

(
5

ln 10

)2
〈(

δH
σ

)2
〉

+N(riso) (6)

where the noise term is given by the variance ex-
pected in an isotropic universe due to chance statisti-
cal fluctuations (as well as any systematic uncertainties),
N(riso) ≡〈(riso)2〉. Here we have assumed no correlation
between the random fluctuations in the isotropic residu-
als riso(n̂) and the isotropy breaking δ(n̂), which is jus-
tified given their completely different origins.

Conveniently, our angular power spectrum measure-
ment can be converted to the variance of the residuals
on the sky via

Var(rdata) ≡ 〈(rdata)2〉 =

`max∑
`=1

2`+ 1

4π
C` (7)

where we define the sum in the range that we measured
the multipoles, ` ∈ [1, `max].

Because both the data and bootstrap variance increase
with maximum multipole, each going roughly as (`max)2

for a flat power spectrum, the results depend on the res-
olution of the map. Physically this makes sense, as a
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FIG. 4. Variance in the expansion rate derived from the clus-
tering of SNIa residuals on the sky. The thick solid curve
shows the signal in the data. The color-coded regions present
the 68%, 95%, and 99.7% upper limits derived from the boot-
straps, which represent expectations for the isotropic distribu-
tion of SNIa residuals. The thin grey band around the black
curve shows the effect on the variance of the data due to the
uncertainty in the cosmological-parameter values. Note that
the curves flatten out around 3 degrees as expected, since
this is the resolution limit imposed by the pixelation with
Nside = 16. The dotted curve shows the expected contribu-
tion to the signal of the SNIa’s peculiar velocities.

finer-resolution map allows for additional, smaller-scale
anisotropic spatial modes that can lurk just below the
detection level, and hence leads to a weaker overall con-
straint on the breaking of isotropy. To address this in a
way that is both quantitative and physically motivated,
we smooth the residual maps. It is sufficient to do this
in multipole space; we apply a Gaussian beam b` that
depends on the desired smoothing FWHM; the effect on
the angular power spectrum is then Csmoothed

` = b2`C`.
We are finally ready to recast our results as limits on

the variation of the Hubble parameter at the present
time. From Eq. (6), we first cast the variance in the ob-
served residuals as the rms Hubble parameter variation.
If the noise term could be neglected, the rms Hubble pa-
rameter variation would be, according to Eq. (6)

(δH)rms '
(

ln 10

5

)
〈σ−2〉−1/2

√
Var(rdata) (8)

where 〈σ−2〉−1/2 ' 0.13 is the inverse-square-weighted
intrinsic dispersion of Pantheon SNIa. Given (see below)
that we do not observe the evidence for a “signal” —
a larger variance of the residuals than that expected in
the statistically isotropic universe — the variance evalu-
ated on isotropic bootstraps alone, N(riso), will serve to
produce an upper limit on (δH)rms as per Eq. (8).

The principal results are shown in Fig. 4. Here we show
the 68%, 95%, and 99.7% upper limits on the expan-
sion rate variance 〈δ2H〉 from the bootstraps, along with
the variance computed from the Pantheon SNIa data,
both as a function of the smoothing scale. The grey

band shows the effect on the variance of the data due to
the uncertainty in the cosmological-parameter values. As
mentioned above, coarser smoothing implies more strin-
gent constraints and vice versa. The dotted line shows
the guaranteed signal given by the peculiar velocities of
the SNIa in the Pantheon sample, calculated using the
formalism in [30]; the effect is very small and can be ne-
glected. Note also that our limits include the marginal-
ization over the uncertainty in the cosmological param-
eters since, in generating the bootstraps, we draw ΩM

and M (and hence values of theoretical magnitudes mth
i

and the corresponding residuals ri) from the posterior
distribution of these two parameters obtained from the
cosmological analysis of the Pantheon SNIa dataset.

Figure 4 indicates no evidence for breaking of the as-
sumption of isotropy and leads to quantitative limits on
its breaking. For example, for the FWHM = 60 de-
gree smoothing, the 99.7 percentile upper limit calculated
from the bootstraps is Var(riso) = 0.0215, and thus

[(δH)rms]
FWHM=60◦

< 0.009 (99.7% CL), (9)

or a . 1% constraint on isotropy of the expansion at
large angular scales. To stress-test the dependence of
our constraints on data selection we have repeated the
analysis with only SNIa out to maximum redshift zmax ∈
{0.1, 0.2, 0.5, 1.0}. While both the variance in the data
and the noise limits increase with decreasing zmax, re-
production of Fig. 4 in these cases reveals results quali-
tatively similar to our fiducial analysis, with no evidence
for breaking of the assumption of statistical isotropy.

Conclusions. We have proposed and carried out a non-
parametric test of the statistical isotropy of the late-time
universe. Our test utilizes the Pantheon set of just over a
thousand type Ia supernovae, whose clustering we mea-
sure by evaluating the angular power spectrum of the
SNIa residuals relative to the best-fit cosmological model.
We use a novel — to these tests of isotropy — and simple
method of estimating the noise that describes the cluster-
ing expected in the isotropic case by bootstrapping the
spatial distribution of the SNIa residuals.

To further quantify and summarize our findings, we
evaluate the variance of the residuals i.e. calculate their
zero-lag correlation function, and express the results in
terms of constraints on the rms spatial variation of the
expansion rate (δH)rms ≡ 〈(δH(n̂)/H)2〉1/2, where the
latter is constrained at z ∼ 0.3 where SNIa have the
most constraining power. Because this quantity increases
as smaller spatial scales are probed we explicitly smooth
the angular power spectrum, evaluating the rms variation
as a function of the smoothing scale.

Our results show no evidence for breaking of statistical
isotropy in the Pantheon sample and, for the first time to
our knowledge, constrain it at better than the 1% level
at large spatial scales (smoothing FWHM & 60◦); see
Fig. 4.

We pay particular attention to the control and under-
standing of systematic errors. Our analysis choices en-
sure that our results do not depend on the pixelation of
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the map of SNIa residuals. We explicitly account for the
uncertainty in the values of the cosmological parameters
used to calculate the residuals and for the fact that there
is a guaranteed signal of anisotropy due to the peculiar
velocities of nearby objects; both effects are small and
we explicitly marginalize over the former. We also find
no qualitative change in our results when we restrict the
range of redshifts of the SNIa in the Pantheon sample.

Our analysis does not assume the Gaussianity of the
SNIa residuals, although the latter does approximately
hold. We do assume the ΛCDM cosmological model; this

is justifiable given the lack of evidence for its extensions
(e.g. [40]).

Our test therefore constrains the isotropy of the expan-
sion rate at z . 1 at the ∼ 1% level at the largest angular
scales and complements the corresponding (though 2-3
orders-of-magnitude stronger) tests in the early universe.
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