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We show that moiré bands of twisted homobilayers can be topologically nontrivial, and illustrate
the tendency by studying valence band states in ±K valleys of twisted bilayer transition metal
dichalcogenides, in particular, bilayer MoTe2. Because of the large spin-orbit splitting at the mono-
layer valence band maxima, the low energy valence states of the twisted bilayer MoTe2 at +K (−K)
valley can be described using a two-band model with a layer-pseudospin magnetic field ∆(r) that
has the moiré period. We show that ∆(r) has a topologically non-trivial skyrmion lattice texture
in real space, and that the topmost moiré valence bands provide a realization of the Kane-Mele
quantum spin-Hall model, i.e., the two-dimensional time-reversal-invariant topological insulator.
Because the bands narrow at small twist angles, a rich set of broken symmetry insulating states can
occur at integer numbers of electrons per moiré cell.

Introduction.— Moiré superlattices form in van der
Waals bilayers with small differences between the lattice
constants or orientations of the individual layers, and of-
ten dramatically alter electronic properties [1–6]. In the
presence of long-period moiré patterns, electronic states
can be described by continuum model Hamiltonians with
the moiré periodicity and spinors whose dimension is
equal to the total number of bands, summed over layers,
in the energy range of interest. Application of Bloch’s
theorem then gives rises to moiré bands [7]. Because
the moiré pattern often generates spatial confinement,
moiré bands can be narrow, enhancing the importance
of electronic correlations. The flat bands of magic-angle
twisted bilayer graphene, in which correlated insulating
and superconducting states have been discovered [8, 9],
provide a prominent example. The study of moiré flat
bands has recently become an active area of experimen-
tal and theoretical research centered on efforts to identify
promising bilayer structures, and on topological charac-
terization and many-body interaction physics [10–15].

When the two layers are formed from the same mate-
rial (homobilayers), both must be treated on an equal
footing. The ±K-valley valence bands of semicon-
ductor group-VI transition metal dichalcogenide(TMD)
monolayers provide a prototypical model system because
strong spin-orbit coupling and broken inversion symme-
try lifts spin-degeneracy [16], and the corresponding ho-
mobilayer can be described by a two-band model with
layer pseudospins at each valley. The moiré pattern’s pe-
riodic modulation can then be accounted for by a scalar
potential and a pseudo magnetic field ∆(r) whose com-
ponents are the coefficients of the layer Pauli matrix ex-
pansion of the two-band Hamiltonian, i.e. ∆x and ∆y are
the real and imaginary parts of the interlayer tunneling
amplitude and ∆z is the potential difference between lay-
ers. The field ∆(r) inherits the moiré pattern periodicity
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FIG. 1. (a) Top view of AA stacked MoTe2 homobilayer with
a small twist angle θ and an in-plane displacement d0. The
inset is a schematic side view. (b) ±K valence bands in the
AA stacking case when interlayer coupling is neglected.

and plays a key role in the discussion below.

In this Letter, we focus on the MoTe2 bilayer with
AA stacking [Fig. 1], for which valence band max-
ima are located in ±K valleys according to our first-
principles calculations as shown in the Supplemental
Material(SM)[17]. For this system, we find that ∆(r)
has a skyrmion lattice texture in real space, and that
the moiré bands carry valley-contrasting Chern numbers.
The topological moiré bands can provide a realization of
the Kane-Mele model, where the effective gauge poten-
tial is generated by the momentum shift between the two
twisted layers. When the bilayer is polarized by a verti-
cal displacement potential, the band Chern numbers are
driven to zero before ∆(r) becomes topologically trivial
in real space. In partially filled topological flat bands,
interactions can, for example, break time-reversal sym-
metry to form quantum anomalous Hall states.

Aligned bilayers— To derive a moiré continuum Hamil-
tonian, we start by analyzing the electronic structure of
an aligned bilayer [18]. Because the ±K valleys are re-
lated by time-reversal symmetry T̂ , we can focus on the
+K valley. In an AA stacked TMD homobilayer [Fig. 1],
the valence states at the +K valley valence band maxi-
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mum are mainly of dx2−y2 + idxy orbital character, have
spin up (↑) along ẑ axis [16], and are separated from spin-
down (↓) states by strong spin-orbit splitting. Retaining
only the spin up valence-band states at the +K valley
yields the two-band k · p Hamiltonian [17],

H↑(θ = 0,d0) =

(
−~2k2

2m∗ + ∆b(d0) ∆T (d0)

∆†T (d0) −~2k2

2m∗ + ∆t(d0)

)
,

(1)
with parameters that depend on the displacement d0 be-
tween the aligned layers. In Eq. (1), b and t refer to
bottom (b) and top (t) layers, k is momentum measured
from +K point, m∗ is the valence band effective mass
that is approximately independent of d0 [17], ∆b,t are
layer-dependent energies, and ∆T is an inter-layer tun-
neling amplitude. The dependence of ∆α (α = b, t, T )
on d0 is constrained by the symmetry properties of the
bilayer. The two-dimensional lattice periodicity of the
aligned bilayers implies that the ∆α are periodic func-
tions of d0. A z ↔ −z mirror operation interchanges b
and t and maps displacement d0 to −d0, implying that
∆t(d0) = ∆b(−d0). Threefold rotation around the ẑ axis
requires that ∆b and ∆t be invariant when d0 is rotated
by 2π/3. These symmetry constraints lead to the follow-
ing two-parameter lowest-harmonic parametrization:

∆`(d0) = 2V
∑

j=1,3,5

cos(Gj · d0 + `ψ), (2)

where ` = 1 for the b layer and ` = −1 for the t layer, Gj

is the reciprocal lattice vector obtained by counterclock-
wise rotation of G1 = (4π)/(

√
3a0)ŷ by angle (j−1)π/3,

a0 is the monolayer TMD lattice constant, and V and ψ
respectively characterize the amplitude and shape of the
potentials. Note that we have chosen the spatial averages
of ∆b,t, which must be identical, as the zero of energy.

The d0 dependence of ∆T is most conveniently un-
derstood by assuming a two-center approximation [7] for
tunneling between the metal dx2−y2 + idxy orbitals, and
using a lowest-harmonic approximation. This leads to,

∆T (d0) = w(1 + e−iG2·d0 + e−iG3·d0), (3)

where w is a tunneling strength parameter. It is infor-
mative to highlight three high-symmetry displacement
values: d0,n = n(a1 + a2)/3 for n = 0,±1, where a1,2

are the primitive translation vectors of the aligned bi-
layer: a1 = a0(1, 0) and a2 = a0(1/2,

√
3/2). For

n = 0 the metal atoms of the two layers are aligned,
∆t = ∆b = 6V cos(ψ) and ∆T = 3w; the valence band
maximum states are then symmetric and antisymmetric
combinations of the isolated layer states. For n = ±1 the
metal atoms in one layer are aligned with the chalcogen
atoms in the other layer, and ∆T vanishes as a result of
the threefold rotational symmetry Ĉ3z. We determine the
model parameters by fitting the eigenvalues of H↑(k = 0)
at the three displacements to corresponding values from
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FIG. 2. (a) Brillouin zones of the bottom (blue) and top
(red) layers in a twisted bilayer, and the moiré Brillouin zone
(black). (b) The +K-valley layer pseudospin skyrmion lattice
in the moiré pattern. The color map illustrates the variation
of ∆z, and the arrows indicate ∆x,y. The white lines outline
a single moiré unit cell. The dots indicate the high symme-
try positions RM

M , RM
X and RX

M , where the local interlayer
displacements are respectively d0,0, d0,1 and d0,−1.

fully relativistic band structure calculations using Quan-
tum Espresso [19]. We find that (V, ψ,w) ≈ (8 meV,
−89.6◦, −8.5 meV) for MoTe2.

Moiré Hamiltonian.— We construct the twisted bi-
layer Hamiltonian by starting from an aligned bilayer
with d0 = 0 and then rotating the bottom and top lay-
ers by angles −θ/2 and +θ/2 around a metal site. (Any
initial displacement just shifts the moiré pattern globally
[7, 20].) We take the origin of coordinates to be on this
rotation axis and midway between layers. With respect
to this origin, the bilayer has D3 point group symmetry
generated by the threefold rotation Ĉ3z around ẑ axis and
a twofold rotation Ĉ2y around ŷ axis that swaps the two
layers. In a long-period moiré pattern, the local displace-
ment between the two layers, approximated by θẑ × r,
varies smoothly with the spatial position r [18, 21]. The
moiré Hamiltonian is

H↑ =

(
−~2(k−κ+)2

2m∗ + ∆b(r) ∆T (r)

∆†T (r) −~2(k−κ−)2
2m∗ + ∆t(r)

)
,

(4)
where ∆α(r) is obtained by replacing d0 in Eqs. (2)-(3)
with θẑ × r to account for the spatial variation of the
local inter-layer coordination. The moiré Hamiltonian is
periodic with the moiré period aM = a0/θ. Because of
the twist, the +K points associated with the bottom and
top layers are rotated to different momenta, accounted
for by the κ± shifts in (4). We choose a moiré Brillouin
zone (MBZ) in which the κ± points are located at the
MBZ corners, as illustrated in Fig. 2(a).

To reveal the spatial structure of the ∆α field, we define
the layer pseudospin magnetic field:

∆(r) = (∆x,∆y,∆z) ≡ (Re∆†T , Im∆†T ,
∆b −∆t

2
). (5)

As illustrated in Fig. 2(b), ∆z(r) vanishes along the links
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FIG. 3. (a) Moiré band structure at twist angle 1.2◦. The
system is a topological insulator when the chemical potential
(black dashed line) is in the gap between the first and the
second bands. The red dashed lines are a tight-binding-model
fit based on the effective Hamiltonian (7) with t0 ≈ 0.29 meV
and t1 ≈ 0.06 meV. (b) Total density of states (DOS) as a
function of the number of holes per moiré unit cell (bottom)
and per area (top). (c) Berry curvature F for the first band
in (a). Here the typical magnitude of F is three orders of
magnitude larger than that in the monolayer [16, 17]. (d)
Illustration of the tight-binding model (7). The yellow and
green dots represent RX

M and RM
X sites, and together form a

honeycomb lattice. The signs ± refer to the bond and spin
dependent hopping phase factors exp(±i2πs/3).

that connect nearest-neighbor RMM sites and has mini-
mum and maximum values atRXM andRMX . The in-plane
pseudospin field, which accounts for interlayer tunneling,
has vortex and antivortex structures centered onRXM and
RMX . Here Rβα denotes high-symmetry sites at which α
atoms of the bottom layer are locally aligned with β
atoms of the top layer. It follows that ∆(r) forms a
skyrmion lattice, i.e., that the direction of the ∆(r) cov-
ers the unit sphere once in each moiré unit cell (MUC).
We have explicitly confirmed this property by numeri-
cally evaluating the winding number [22]:

Nw ≡
1

4π

∫
MUC

dr
∆ · (∂x∆× ∂y∆)

|∆|3
= −1. (6)

Skyrmion lattice pseudospin textures in position space in-
dicate [23] the possibility of topological electronic bands
in momentum space, although we will find that the con-
nection is not one-to-one.

Topological bands.— The moiré band structure is illus-
trated in Fig. 3(a) for a representative angle θ = 1.2◦ .
The Ĉ2yT̂ symmetry of the Hamiltonian maps κ+ → κ−
and therefore enforces degeneracy between these points.
For the two topmost moiré bands of the +K valley, wave

functions in the b (t) layer are concentrated near the RMX
(RXM ) sites, which are ∆b (∆t) maxima. Because of the
layer-dependent momentum shifts κ± in the kinetic en-
ergies, the moiré band wave functions vary rapidly over
the MBZ. In particular, the wave function of the topmost
moiré band at κ+ and κ− are respectively localized in
layers b and t. By integrating the Berry curvature F
over the MBZ [24], we confirm that the Chern numbers
C of the two topmost +K valley moiré bands in Fig. 3
are non-trivial (C = ±1) at θ = 1.2◦. The corresponding
bands at the −K valley must have the opposite Chern
numbers due to the T̂ symmetry. Spin-valley locking im-
plies that when the chemical potential is in the gap be-
tween the two topmost bands, the twisted homobilayer is
not only a valley Hall insulator but also a quantum spin
Hall insulator, i.e., a topological insulator [25, 26].

To gain deeper insight into the topological bands, we
construct a tight binding model. The real space distribu-
tion of the wave functions suggests a two-orbital model
for the first two moiré bands:

HTB =
∑
`,s

′∑
RR′

t0 c
†
R`scR′(−`)s

+
∑
`,s

∑
R

′∑
aM

t1e
isκ`·aM c†(R+aM )`scR`s,

(7)

where s = ± denotes spin (equivalent to valley ±K),
and ` = ± labels orbitals localized in the bottom (+1)
and top (−1) layers and centered around the RMX and
RXM sites. The two orbitals form a honeycomb lattice in
Fig. 3(d). In (7), the spin up and down sectors are de-
coupled due to the spin-valley U(1) symmetry of the low-
energy theory, and are related by T̂ symmetry. The first
line of (7) captures inter-layer hopping between nearest
neighbors on the honeycomb lattice. Its form is con-
strained by the requirements that the energy spectra
have threefold rotational symmetry and be identical at
κ+ and κ− points. The second line of (7) captures in-
tralayer hopping between next nearest neighbors on the
honeycomb lattice; the bond and spin-dependent phase
factors exp(isκ` ·aM ), which take values of exp(±i2π/3),
are analogous to the Peierls substitution and account for
the momentum shift κ` in (4). The Hamiltonian (7) is
equivalent to the Kane-Mele model [25, 26], and to two
time-reversed-partner copies of the Haldane model [27].
It correctly captures both the topological character and
the energy dispersion of the first two bands in Fig. 3(a).

Beyond a critical angle θ∗1 ≈ 1.74◦ the gap between
the second and the third bands closes at the γ point, as
illustrated in Fig. 4. When θ crosses θ∗1 from below, the
Chern number of the first band in +K valley remains as
−1, while the Chern numbers for the second and third
bands change from (+1, 0) to (−1,+2). Although, the
two-orbital model (7) is not fully applicable for θ > θ∗1
it still captures the main character of the first two bands
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FIG. 4. (a) Moiré bands at twist angle 2◦. (b) Energy gaps
between adjacent moiré bands as a function of θ. The gap εij
is the difference between the minimum energy of band i and
the maximum energy of band j. (c) Phase diagram as a func-
tion of angle θ and layer bias potential Vz. When the chemical
potential is in the gap between the first and the second band,
the system is a topological insulator in region (I) and a trivial
insulator in region (II). In region (III), the two bands overlap
in energy. The solid and dashed green lines show the criti-
cal bias potentials obtained using the full moiré Hamiltonian
and the effective tight-binding model respectively. (b) and (c)
have the same horizontal axis.

in regions of momentum space away from the γ point.
The system remains as a topological insulator when the
chemical potential is in the gap between the first and the
second bands until θ reaches θ∗2 ≈ 3.1◦, beyond which
there is no global gap between the first two bands. In
the SM[17], we have verified the robustness of our pre-
dicted topological bands against perturbation from re-
mote bands.

Field induced topological transition.— Because the two
sublattices in (7) are associated with different layers, a
vertical electric field generates a staggered sublattice po-
tential, which can induce a topological phase transition
[25–27]. To study this transition, we add a layer depen-
dent potential `Vz/2 to the moiré Hamiltonian (4) so that
∆z → (∆b −∆t + Vz)/2. (We neglect the small spatial
modulation of Vz due to variation in the vertical distance
between layers in the moiré pattern [28].) The magnitude
of Vz has a critical value |Vz|c, at which the gap between
the first and the second moiré bands closes at κ± points.
When |Vz| > |Vz|c, wave functions in the first moiré band
are primarily localized in one single layer and the band
becomes topologically trivial. The tight-binding model
(7) predicts that |Vz|c is equal to splitting between the
first and the second bands at κ± when Vz = 0, because
the interlayer hopping term in (7) vanishes at these mo-
menta. In Fig. 4(c) we compare values of |Vz|c calculated
from the tight-binding and the full moiré band Hamilto-
nian, showing that they match well, particularly for small
twist angles (long moiré period). We note that there is no
one-to-one correspondence between the Chern numbers C
of the electronic bands and the winding number Nw of
the pseudospin field, which remains non-trivial until Vz
equals |∆b −∆t| evaluated at the RXM or RMX sites.

Interaction effects.— When the moiré bands are nearly

flat, the density of states is strongly enhanced [Fig. 3(b)]
and many-body interaction effects are magnified. Here
we focus on interaction effects within the first two moiré
bands at zero Vz and small θ. The on-site Coulomb re-
pulsion U0 scales as e2/(εaW ), where ε is an effective di-
electric constant that depends on the three-dimensional
dielectric environment, and aW is the spatial extent of
the Wannier orbitals centered at RXM or RMX sites. For θ
around 1◦, we find that U0 can be more than one order of
magnitude larger than the hopping parameters t0,1 [17].
In the strong correlation limit, we anticipate that the in-
terplay between layer and spin/valley degrees of freedom
will lead to unusual distinct insulating states at integer
numbers of holes per MUC. For one hole per MUC, where
the first moiré band is half filled, one candidate insu-
lating state is ferromagnetic. Because the single-particle
Hamiltonian has only U(1) symmetry, perpendicular spin
polarization is energetically preferred. The Ising spin
anisotropy implies finite temperature phase transitions.
When the first moiré band is completely spin-polarized,
the system is a quantum anomalous Hall insulator. Sim-
ilar physics could occur for three holes per MUC, where
the second moiré band is half filled. For two holes per
MUC (equivalently one hole per sublattice site of the hon-
eycomb lattice in Kane-Mele model), there is a compe-
tition between the quantum spin Hall insulator and the
antiferromagnetic insulator [29], which occur for weak
and strong interactions respectively. For some fractional
numbers of holes per MUC, the flat bands may host frac-
tional topological insulators [30].

Discussion.— It has been proposed that Hubbard
model can be simulated in TMD heterobilayers [10]. In
twisted TMD homobilayers, the two layers can be ef-
fectively decoupled by using a finite layer bias potential
to drive the system into region (II) of the phase dia-
gram in Fig. 4(c). Thus, conventional one-orbital Hub-
bard model can also be studied in twisted homobilay-
ers, with a greater scope for in situ manipulation of
model parameters. Compared to heterobilayers, twisted
TMD homobilayers may be experimentally realized with
a more precise control of the twist angle by using the
‘tear-and-stack’ technique[4, 8, 9]. Moiré bands with
valley-contrasting Chern numbers have been proposed
in some graphene-based moiré systems [14, 15, 31]. In
this case however, quantum spin Hall states that might
be induced by interactions cannot survive to accessible
temperatures because electrons in graphene have accu-
rate SU(2) spin symmetry which enhances fluctuation
effects. In Ref. [32], quantum spin Hall nano-dots and
nano-stripes have been proposed for TMD-based moiré
systems in which the large gap between valence and con-
duction bands needs to be inverted by strong vertical
electric field. In contrast, our model Hamiltonian relies
only on valence band states. Our proposal for topological
states is based on valley contrast physics and on pseu-
dospin texture in the moiré pattern; the advantage is
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that it does not require massless chiral fermions in the
parent monolayer or aligned bilayer, which may lead to
application in a larger class of two-dimensional materials.
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