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Abstract

We explore a single degenerate optical cavity supporting a synthetic two dimensional space,

which includes the frequency and the orbital angular momentum axes of light. We create the ef-

fective gauge potential inside this synthetic space and show that the system exhibits topologically-

protected one-way edge states along the OAM axis at the boundaries of the frequency dimension.

In this synthetic space, we present a robust generation and manipulation of entanglement between

the frequency and OAM of photons. Our work shows that a higher dimensional synthetic space

involving multiple degrees of freedom of light can be achieved in a “zero” dimensional spatial struc-

ture, pointing towards a unique platform to explore topological photonics and to realize potential

applications in optical communications and quantum information processing.
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The synthetic dimension in photonics has been explored with great interest in the past

few years [1–6]. Various degrees of freedom of photons, such as their frequency [5–14] and

their orbital angular momentum (OAM) [4, 15–18], have been used to construct the synthetic

space. By combining the spatial dimension with either the frequency or the OAM dimension,

one can use a one-dimensional array of optical cavities to create a two-dimensional synthetic

space [4–6]. In such synthetic spaces, it is possible to explore various high dimensional

physics effects with a low dimensional physical structure, including photonic gauge potential

[4–6], topological photonics [8, 9, 12, 16, 17], and photonic physics with parity-time symmetry

[13]. Furthermore, these constructions enable not only the control of light propagation along

the spatial dimension, but also the manipulation of either the frequency or the OAM of light.

Such capabilities lead to various potential applications in the fields of optical communications

and quantum information processing [1, 19–24].

In most previous proposals towards two or higher dimensional systems with one of the

dimensions being a synthetic dimension, the spatial dimension is still required in terms of

the use of multiple cavities [4–6, 8, 9, 14–16]. The use of multiple cavities adds significant

complexity to experimental implementations. For example, in multi-cavity systems one

needs to align all resonant frequencies in each cavity with respect to one another. In this

article, we show that it is possible to achieve a two-dimensional synthetic space with only one

single degenerate optical cavity. The synthetic space is composed of one frequency dimension

and one orbital angular momentum dimension of light. No spatial dimension is required.

We also propose to create a photonic gauge potential in such a synthetic space. The

concept of an effective gauge potential for photons was first proposed in real space, and it

provides new capabilities in controlling the spatial flow of light [25–28, 31–33]. One impor-

tant consequence of the photonic gauge potential is the creation of an effective magnetic field

for photons [25, 27, 28]. Such effective magnetic field breaks time-reversal symmetry and

creates topologically protected one-way edge states, which is robust to variation of system

details [29, 30]. The photonic gauge potential can also be implemented in a synthetic space

with an array of cavities [4, 5]. We explore the effective gauge potential in the synthetic space

in our proposal. A secondary cavity is used to create artificial frequency boundaries. The

frequency of a resonant mode in the secondary cavity is aligned with one resonant mode in

the main cavity, so it provides a hard cutoff at the corresponding frequency. Topologically-

protected one-way edge states are found to be located at the boundaries in the frequency
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dimension and propagating unidirectionally along the OAM axis. Because of the connectivity

between the frequency and OAM axes, one can achieve a topologically-protected manipu-

lation of entangled photon states. Our work creates a synthetic space including more than

one degree of freedom of light in a “zero” dimensional spatial structure, which provides a

unique platform to explore the photonic gauge potential and to manipulate the quantum

state of light which is potentially important for quantum optical communication.

We start by considering a single degenerate optical ring cavity shown in Fig. 1(a). The

optical elements are chosen to have cylindrical symmetry, so the transverse profile of the

cavity modes are the Laguerre-Gaussian modes [4, 34]. In such a degenerate cavity, the

resonant frequency is independent of the radial and azimuthal mode index of the transverse

modal profile [35–37]. Hence it supports a set of resonant modes with frequencies ωn =

ω0 + nΩ. Here ω0 is the frequency for the 0th mode, n is an integer, and Ω = 2πc/L ≪ ω0

is the free-spectral-range of the optical cavity, where L is the length of the cavity.

We can expand the electric field E in the degenerate optical cavity as E =
∑

l,n cl,nAl,n(r⊥)e
i(knz−ωnt)e−ilφ, where Al,n is the modal profile along the radial dimension

r⊥ perpendicular to the circulating beam [4, 5, 38]. cl,n is the modal amplitude for the

eigenmode at the frequency ωn and the OAM l. kn = ωn/c is the wavevector for the modes

with frequency ωn, and z denotes the propagation axis for the circulating beam. l, which is

an integer, denotes the angular momentum of the circulating beam. φ denotes the azimuthal

coordinate.

The cavity shown in Fig. 1(a) consists of a main loop and an auxiliary path. We place an

electro-optic phase modulator (EOM) inside the main loop of the cavity. The modulation

has a time-dependent transmission coefficient T = ei2β cos(ΩM t), where ΩM is the modulation

frequency and β denotes the modulation amplitude. We consider the weak modulation

regime with the modulation strength g ≡ βΩ/2π ≪ Ω. The change of the modal amplitude

after each round trip due to passing through the EOM gives

d

dt
cl,n = ig(cl,n+1e

i∆t + cl,n−1e
−i∆t), (1)

where ∆ = ΩM −Ω ≪ Ω is the detuning of the modulation frequency from the free spectral

range of the cavity.

A pair of beam splitters [at positions A and H in Fig. 1(a)] is placed in the main loop

of the optical cavity to divert a small portion of light into an auxiliary path. Inside this
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FIG. 1: (a) A single optical cavity including an auxiliary path, which is split into two arms

A → B → G → H and A → B → C → F → G → H. EOM denotes the electro-optic phase

modulator, SLM is the spatial light modulator, and BS is the beam splitter. (b) A synthetic

two-dimensional space consisted of the frequency and OAM axes of light. (c) A secondary cavity

is coupled to the main cavity to provide the artificial boundaries in the frequency dimension.

Input/output channel to the main cavity is created by changing the transmissivity/reflectivity of

mirrors.

auxiliary path, light is split equally into two separate arms. Each arm has a spatial light

modulator (SLM), which changes the OAM of light by either +1 or −1. Here bandwidths of

two SLMs are assumed to be much larger than Ω, so SLMs perform same operations for all

ωn. The lengths of the two arms between positions A and H are set to be different, i.e., we

choose LA→B→G→H − LA→D→E→H = LA→D→E→H − LA→B→C→F→G→H = δL. For light at a

frequency ωn, the difference in propagation phase due to such a mismatch in arm lengths is

knδl = ω0δl/c+nΩδl/c ≡ θ0+nθ, which is dependent on n (i.e. the resonant frequency ωn).

For our purpose here, θ0 is a global phase, which can be neglected without loss of generality.

We further require that there is no resonant loop except for the main loop in the optical

cavity, so we set θ/2π ≡ Ωδl/2πc to be an irrational number. Therefore, this auxiliary path
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contributes to a change of the modal amplitude after each round trip as

d

dt
cl,n = iκ(cl+1,ne

inθ + cl−1,ne
−inθ), (2)

where κ ≪ Ω denotes the rate for the change between two nearest-neighbor OAMs after the

field passes through the auxiliary path.

Thus the system in Fig. 1(a) can be described by the Hamiltonian

H =
∑

l,n

g(a†l,n+1al,ne
i∆t + a†l,n−1al,ne

−i∆t) + κ(a†l+1,nal,ne
inθ + a†l−1,nal,ne

−inθ), (3)

here we set ~ = 1. al,n (a†l,n) is the annihilation (creation) operator for the mode at the

frequency ωn and the OAM l. We use al,n = bl,ne
in∆t and transform the Hamiltonian in Eq.

(3) to

H̃ =
∑

n

n∆b†l,nbl,n + g(b†l,n+1bl,n + b†l,n−1bl,n) + κ(b†l+1,nbl,ne
inθ + b†l−1,nbl,ne

−inθ). (4)

Eq. (4) presents a two dimensional synthetic space defined by the frequency and the OAM

axes of light [see Fig. 1(b)]. The distribution of hopping phases follows the Landau gauge

and generates a uniform magnetic flux θ in each unit cell. The modulation detuning ∆

gives an effective electric field along the synthetic frequency dimension. One can therefore

manipulate both the OAM and the frequency of light simultaneously in this synthetic space

by controlling the effective electric and magnetic fields for light.

We first explore the topological effect due to the presence of the effective magnetic field

in the synthetic space. For this purpose, we set ∆ = 0 and κ = g. The eigenspectrum of the

Hamiltonian (4) exhibits the Hofstadter butterfly pattern [39], as shown in Fig. 2(a), where

we plot the eigenspectrum with different θ. ε, the eigenvalue, is obtained by diagonalizing

Eq. (4). An input optical field with the frequency shift ε regarding to an arbitrary ωn may

excite a propagating mode in the synthetic space for the system, provided that ε lies outside

the band gap [4–6]. In our design, θ is related to δL and can be tuned by changing the

lengths of two arms. We restrict δL < L so that θ/2π < 1. We plot the eigenspectrum up

to θ/2π = 0.8, where the design of the cavity is physically feasible.

In our setup, θ can be continuously tuned and therefore can assume any number. Thus,

one can realize an effective magnetic field incommensurate with the lattice. As an illustra-

tion, we choose θ/2π =
(√

5− 1
)

/2 [which corresponds to the red line in Fig. 2(a)]. For this
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FIG. 2: (a) Projected eigenspectrum versus θ from the Hamiltonian (4). ∆ = 0 and κ = g. (b)

Projected eigenspectrum with θ/2π =
(√

5− 1
)

/2, indicated by the red line in (a). 51 resonant

frequency modes are considered. kl is the wavevector reciprocal to the synthetic OAM dimension.

(c) The corresponding eigenstates for the field intensity at (kl/π, ε/g) = (0, 0) (Black), (0.5, 0.9)

(Blue), and (−0.5, 0.9) (Green) labelled in (a), respectively.

system, the Hamiltonian of Eq. (4) is still periodic along the OAM axis. Therefore, we plot

the projected bandstructure versus kl, which is the wavevector reciprocal to the synthetic

OAM axis of light in Fig. 2(b). We choose 51 resonant frequency modes (ωn ∈ [ω−25, ω25])

and assume a boundary along the frequency axis. (We will discuss how such a boundary

can be created in the detailed simulation below). The effective magnetic flux θ breaks the

time-reversal symmetry in the synthetic space, and makes the system topologically non-

trivial. One can see that, near ε/g ∼ 1, the bandgap is open and there are two pairs of

topologically-protected one-way edge modes inside the gap. The edge modes are strongly

localized at the boundary along the frequency axis, whereas the bulk modes are delocalized

throughout the synthetic space [see Fig. 2(c)].

We then perform the simulation to observe the evolutions of edge states in the synthetic

space. To create the artificial boundaries in the frequency dimension, we couple the optical

cavity with a secondary cavity as shown in Fig. 1(c), which is designed to be resonant with

the frequency ω±(N+1) (where N is a large positive integer), but to be off resonant with all
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other frequencies in-between, i.e. ωn ∈ [ω−N , ωN ]. Such a secondary cavity then creates

artificial boundaries at ω±N . Input/output channels are also introduced so that one can

inject light into and extract light out from the main cavity. The coupled-mode equations

for this system read [38, 40, 41]

dcl,n
dt

= −γcl,n − ig (cl,n−1 + cl,n+1)− ig
(

cl−1,ne
inθ + cl+1,ne

−inθ
)

−iηfl,N+1δn,N+1 − iηfl,−(N+1)δn,−(N+1) +
√
γsinl,n, (5)

dfl,±(N+1)

dt
= −iηcl,±(N+1), (6)

soutl,n =
√
γcl,n. (7)

Here η is the coupling constant between the main cavity and the secondary cavity. γ/2 is

the decay rate through the coupling between the main cavity and the input/output channel.

fl,n and sinl,n (soutl,n ) are the modal amplitudes for the mode in the secondary cavity and the

input (output) amplitudes, respectively, at the frequency ωn and OAM l.

FIG. 3: The steady-state solutions of the normalized intensities |soutl,n |2 for the output field with the

frequency ωn and the OAM l by solving Eqs. (5)-(7). (a) and (b) η = 10g, which creates artificial

boundaries in the frequency dimension. (c) η = g, where the artificial boundary is inefficient and

no edge state is created. The desired artificial boundaries are labelled by blue dashed line. Red

arrows denote modes (n and l) of initial excitations from the input source.
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In the simulation, we consider a synthetic space consisting of 31 frequency components

(n = −15 . . . 15) and 51 OAM components (l = −25 . . . 25). For the secondary cavity, we

set N = 5 and vary η to achieve the artificial boundaries at ω±N . The input/output channel

couples with the main cavity at a rate γ = 0.14g and the input source is a monochromatic

field with l = 0. All other parameters are the same as those in calculating the bandstructure

in Fig. 2. In both Figs. 3(a) and 3(b), we plot the steady-state solution for the normalized

intensities |soutl,n |2 in the synthetic space from simulating Eqs. (5)-(7) with η = 10g. In Fig.

3(a), we set the input source sinl,n = δl,0δn,Ne
−igt. In Fig. 3(b), we set sinl,n = δl,0δn,−Ne

−igt.

The small frequency shift term e−igt is designed to excite the topologically-protected one-way

edge mode shown in Fig. 2. We can see the edge modes both in Figs. 3(a) and 3(b). In Fig.

3(a), the edge mode propagates unidirectionally along the positive direction of the synthetic

OAM axis, while it propagates along the negative direction in Fig. 3(b). The edge modes

are localized at the frequency boundaries of ω±N , demonstrating that the artificial boundary

along the synthetic frequency axis can be created by introducing a secondary cavity. As a

comparison, we also perform the simulation with the same parameters but η = g in Fig.

3(c). In this case, the coupling η due to the secondary cavity is weak and the artificial

boundary is inefficient. No edge state is created. The amplitudes are instead localized near

the source since the frequency is in the bandgap for the bulk. Therefore, one requires a large

coupling η to create an artificial boundary in the frequency dimension.

The intrinsic cavity loss γi can also be set as a parameter. In the Supplemental Material,

we show that one can control the evolution of edge states by changing γi [42]. In Fig. 3,

there is no boundary along the OAM axis. It is also possible to construct a sharp OAM

boundary by following the method proposed in Ref. [17], and hence create a synthetic two

dimensional lattice that is finite along both dimensions. The simulation in this square lattice

shows the edge state can propagates unidirectionally through the corner of the frequency

and OAM edges, which indicates the robustness due to topological protection [42]. The

phenomena of the edge states, alternatively, might be described from the perspective of the

phase accumulation of a detuned input from the resonance once it circulates after roundtrips.

Besides probing the edge states, we can also probe the bulk property of our system, such

as the transmission property in the synthetic space, which provides a direct way to measure

the eigenspectrum shown in Fig. 2(b) [42].

One potential application of our system is the generation of entangled pair of photons

8



with different OAMs. Such entangled photon pair is of great importance in the field of

optical quantum communication and quantum information processing [19]. Typical method

to prepare the entangled photon pair is to use the spontaneous parametric down-conversion,

and the generated entangled state is

|Ψ±〉 = 1√
2
(|1ωA

1ωB
〉 ± |1ωB

1ωA
〉) , (8)

where 1ωA(B)
means that one photon is excited at the frequency ωA(B). Thus the entan-

glement occurs between photons with different frequencies. In our synthetic space, one can

transfer this entanglement to photons with different OAMs, in a fashion that is topologically

protected.

FIG. 4: The steady-state solutions of the normalized intensities |soutl,n |2 for the output field with

the frequency ωn and the OAM l. (a) The input entangled photon pair in Eq. (8) has the 0-th

OAM and frequencies ωA = ω−N + g, ωB = ωN + g. (b) The photon pair has ωA = ω−N − g,

ωB = ωN +g. The desired artificial boundaries are labelled by blue dashed line. Red arrows denote

modes (n and l) of initial excitations from the input source.

To demonstrate it, we use the same parameters as those in the simulation of Fig. 3(a). We

choose the input entangled photon pair with ωA = ω−N+g, ωB = ωN+g, and its OAM l = 0.

In Fig. 4(a), we plot the simulation result. One see that a pair of edge modes propagate

along the positive/negative direction of the OAM axis with the same speed. The two-photon

state thus evolves to a new state |Ψ±
1 〉 =

∑

l≥0 αl (|1ωA,−l1ωB,l〉 ± |1ωB,l1ωA,−l〉), where αl
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represents the transfer coefficient. This state is a multi-dimensional entangled state for two

photons, which has fundamental importance in quantum communication [19, 43–45]. For

this state, the entanglement exists between photons with opposite OAMs. Alternatively, we

can also create state where the entanglement occurs between photons with the same OAM.

For this purpose, in Fig. 4(b), we perform the simulation where the initial input photon

pair has ωA = ω−N − g and ωB = ωN + g. In this case, the edge modes that are excited

both propagate along the positive OAM axis. The generated new state becomes |Ψ±
2 〉 =

∑

l≥0 αl (|1ωA,l1ωB,l〉 ± |1ωB,l1ωA,l〉). The transfer between the frequency entanglement and

OAM entanglement is a robust process due to the topological protection, providing the

potential application towards the quantum entanglement of two different degrees of freedom

of photons, which is of fundamental importance in quantum optics [46].

To implement our concept experimentally, we consider free-space optics, which provides

many choices for EOMs and SLMs. The operation frequency for the SLM is ω0 ∼ 100

THz. The length of the optical cavity is on the order of 1–10 m, which sets the mode

spacing and the modulation frequency of the EOM at Ω ∼10–100 MHz≪ ω0. This makes

the resonant modes being spectrally dense. SLM therefore works fine for resonant modes at

frequencies near ω0. The modulation strength g shall be much smaller than Ω, i.e. g ∼0.5–

5 MHz, which also makes η < Ω. Loss in the cavity includes transmissions through the

input/output channels (mirrors), as well as intrinsic losses associated with reflections on

mirrors, modulations in the EOM and SLMs, and also travelling through the additional

path. One can compensate for the loss and tune γi [42] by placing an amplifier in the optical

path inside the main cavity, operated with a lower gain without inducing lasing, which

dramatically increase the quality factor of the optical cavity [47].

In summary, we propose a two-dimensional synthetic space in a single degenerate optical

cavity including the frequency and the OAM axes of light, where the photonic gauge potential

can be created. A secondary cavity is used to create artificial boundaries in the synthetic

frequency dimension. We show that such a system supports topologically-protected one-

way edge states at the boundaries of the frequency dimension propagating unidirectionally

along the OAM dimension. Our system hence provides a unique platform to explore two-

dimensional topological physics in a “zero” dimensional spatial structure. Compared with

previous works that use a one-dimensional array of cavities to simulate two dimensional

physics [1, 4–6], our system here is easier to implement, since there is no longer a need to align
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the resonances of multiple cavities. Moreover, our system provides a connection between

the OAM and the frequency of photons. With this connection, one can demonstrate a

topologically-protected manipulation of entangled photon states, which is potentially useful

for applications in quantum optical communications.
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