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Access to single particle momenta provides new means of studying the dynamics of few interacting
particles. In a joint theoretical and experimental effort, we observe and analyze the effects of a finite
number of ultracold two-body collisions on the relative and single-particle densities by quenching
two ultracold atoms with initial narrow wave packet into a wide trap with inverted aspect ratio. The
experimentally observed spatial oscillations of the relative density are reproduced by a parameter-
free zero-range theory and interpreted in terms of cross-dimensional flux. We theoretically study
the long time dynamics and find that the system does not approach its thermodynamic limit. The
set-up can be viewed as an advanced particle-collider that allows one to watch the collision process
itself.

PACS numbers:

The one-dimensional harmonic oscillator is discussed in
many text books, from introductory classical and quan-
tum mechanics to quantum optics and field theory [1].
The physics of the one-dimensional harmonic oscillator
is simple: Its classical orbits are sinusoidal and periodic
and the quantum propagator has a compact analytical
expression. Moreover, the harmonic oscillator allows one
to gain intuition for the dynamics of multi-dimensional
systems.

This work studies, both experimentally and theoret-
ically, the quench dynamics of an anisotropic three-
dimensional harmonic oscillator in which the three de-
grees of freedom are coupled by a point scatterer of vary-
ing strength that is located at the origin. Since the point
scatterer has a measure of zero, the classical trajectories
are not influenced by the point scatterer [2]. However, the
situation changes drastically when one enters the quan-
tum regime since the point scatterer can simultaneously
partially reflect and partially transmit the wave packet,
or even reflect the wave packet in its entirety [2–15].

The quench dynamics of one-dimensional quantum sys-
tems has been investigated extensively at the microscopic
level [9–12, 14–24]. Examples include the realization of
quantum Newton’s cradle [16, 20, 21] and the observa-
tion of quantum revivals in a system containing around
1000 atoms, addressing questions related to equilibra-
tion, thermalization, and their connections to integrabil-
ity of one-dimensional systems [22]. The quench dynam-
ics of three-dimensional systems is expected to differ from
that of one-dimensional systems in important ways. This
letter explores these differences by studying the quench
dynamics of an anisotropic harmonic oscillator, includ-
ing the weakly-attractive and repulsive regimes, where
the system behavior is quite intuitive, and the strongly-
interacting regime, where the s-wave scattering length
is the largest length scale in the problem and intuition
tends to fail.

We realize the three-dimensional anisotropic harmonic

oscillator with point scatterer experimentally by opti-
cally trapping two ultracold atoms [Fig. 1(a)], which in-
teract via a short-range van der Waals potential with
tunable scattering length. The dynamics are initiated
by a quench of the trap geometry. The system provides
a versatile platform for studying few-body dynamics in
a regime where a small and predictable number of col-
lisions occur. Since the optical trap is nearly perfectly
harmonic, the center-of-mass motion, which is not af-
fected by the interactions, decouples from the relative
motion. Thus, we focus on (i) the dynamics in the rel-
ative degrees of freedom and (ii) the impact of this mo-
tion on the single-particle density. Excellent agreement
with our parameter-free theory predictions is found. In
the strongly-interacting regime, the resulting density pro-
files in the relative, low-energy z-coordinate display time-
dependent oscillatory or fringe pattern, which we inter-
pret as signatures of cross-dimensional dynamics. The
single-particle density profiles, in contrast, are smooth
except for very short time periods during which the two
particles are close to each other. This illustrates that
the scattering events impact the single- and higher-order
correlation functions differently. While the relative den-
sity varies appreciably with time, our calculations reveal
an extremely slow approach to equilibrium, manifest in
a failure to thermalize over thousands of cycles.

Experimentally, we prepare two 6Li atoms in two
distinct hyperfine states denoted by |1〉 and |3〉 [25]
in the motional ground state of a tightly focussed
optical tweezer trap elongated along the x-direction
[Fig. 1(ai)] [26]. At time t = 0, the system is quenched
by instantaneously changing the trap geometry and as-
pect ratio [Fig. 1(aii)]. We release the atoms into a much
weaker dipole trap with inverted geometry, whose weak-
est frequency is along the z-axis. Since the trap po-
tentials are harmonic to a good approximation, the sys-
tem before and after the quench is described in terms of
the low-energy two-particle Hamiltonian Hα = Hrel,α +
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FIG. 1: (color online) Schematic of system and characterization of initial state. (ai) We prepare the wavepacket of two
interacting 6Li atoms (blue cloud) in the ground state of a tight optical tweezer trap (dark red). We additionaly ramp on a
weak crossed beam optical dipole trap (light red, not to scale). (aii) At t = 0 we switch off the tweezer trap to quench the trap
geometry so that the cloud quickly oscillates in the x- and y-directions while slowly expanding in the z-direction. (aiii) After
a variable expansion time we record the z-positions of both atoms via fluorescence imaging. (b) Schematic energy spectrum of
the Hamiltonian Hrel,f after the quench, showing a single “molecular branch” and a nearly harmonic spectrum of “scattering
states”. Different magnetic fields lead to very different projections of the initial state onto the eigenstates of Hrel,f . In the
weakly-interacting regime at large magnetic fields, many scattering states are populated with roughly equal probability. At
lower magnetic fields, the projection onto the single molecular state increases, eventually dominating the two-body dynamics.
For the experimental parameters, hundreds of levels contribute to the dynamics.

Hcm,α, where α = i, f denotes the geometry before (i)
and after (f) the quench,
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Here, ~r = (x, y, z)T and ~R = (X,Y, Z)T are the relative
and center-of-mass position vectors, respectively, µ and
M the associated masses, and as the three-dimensional
s-wave scattering length characterizing the interaction
strength.

The experimentally measured trapping frequencies are
ωx,i : ωy,i : ωz,i = 2π × (6.4 : 31 : 30) kHz before and
ωx,f : ωy,f : ωz,f = 2π×(640 : 600 : 61.7) Hz (aspect ratio
of ωx/y,f/ωz,f ≈ 10) after the quench. For all theoretical
studies presented, to simplify the calculations, we assume
that the initial and final traps are axially symmetric (but
about different axis). Specifically, our calculations use
ωy,i = ωz,i, ωx,i/ωz,i = 0.2098, ωz,i/ωz,f = 494.3, ωx,f =
ωy,f , and ωx,f/ωz,f = 10.

We record the spatial correlations along the z-axis
[Fig. 1(aiii)] that develop during the wave packet dy-
namics using a single-atom and state resolved imaging
scheme [27]. Furthermore, we control the interaction
strength by adiabatically adjusting a magnetic offset field
in the vicinity of a broad Feshbach resonance located at
around 690 G [25]. This allows us to reach three dis-
tinct regimes via the quench, which are set by the role
of a bound state in the system [Fig. 1(b)]: In the case
of a small negative as [in units of the harmonic oscil-
lator length aho,z =

√
~/(µωz,f )], the system is in the

weakly-attractive regime where the quench projects onto
a large number of nearly free particle eigenstates. For
as/aho,z = −0.0203, the occupation |c0|2 of the low-
est eigenstate of Hrel,f immediately after the quench is
about 2% (Table S1 [28]). For small positive as (e.g.
as/aho,z = 0.0474), in contrast, the particles are deeply
bound into a single molecular state both before and after
the quench. In this work, we are particularly interested
in the paradigmatic “unitary” regime [38, 39], where the
three-dimensional scattering length is the largest length
scale in the system or even diverges. In this regime
(as/aho,z = −4.64), |c0|2 is of order 0.3 (Table S1 [28]).

Since the quench does not couple the relative and
center-of-mass motions, the center-of-mass wave packet
for t > 0 simply performs breathing oscillations at the
characteristic time scales Tx/y/z/2 = π/ωx/y/z,f . The
relative motion, in contrast, is non-trivial. Since the en-
ergy 〈Erel〉 of the t > 0 wave packet in the relative de-
grees of freedom is much larger than the energy scales
set by the trapping frequencies of Hrel,f (Table S1 [28]),
the dynamics in the relative degrees of freedom involves
many eigenstates of Hrel,f . To illustrate this, the circles
in Fig. 1(b) schematically show the occupation proba-
bilities |cj |2, which are obtained by expanding the rel-
ative portion of the t < 0 wave packet in terms of the
eigenstates of Hrel,f [40, 41], for three different s-wave
scattering lengths.

Figure 2 summarizes the dynamics for as = −4.64aho,z
by displaying 〈ρ2〉 and 〈z2〉, where ρ2 = x2 + y2. Both
observables oscillate smoothly with time but at different
frequencies. The times marked by a circle, a square, and
arrows are discussed in more detail in Figs. 3, 4, and 5,
respectively.

Figure 3 shows the relative density along the z-
coordinate for t = 3.5 ms = 2.16Tx, i.e., after four colli-
sions (Fig. 2), for six different s-wave scattering lengths.
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FIG. 2: (color online) Expectation values of ρ2 (solid line)
and z2 (dashed line) for as = −4.64aho,z as a function of
time. The circle, square, and arrows mark the times that are
considered in Figs. 3, 4, and 5, respectively.

The agreement between the experimental results (circles)
and the parameter-free theory results (solid lines) is, ex-
cept for Fig. 3(f), very good. The theoretical results
shown in Fig. 3 are convolved with a Gaussian to account
for the experimental resolution of 4 µm = 0.542aho,z.
Interestingly, the relative densities shown in Figs. 3(a)-
3(e) contain oscillatory structure or fringes, which change
notably with the s-wave scattering length as, on top of
a broad background. The fringe pattern changes with
time and we have found no unique way to assign t- and
z-independent peak spacings for fixed scattering length.
For the smallest positive s-wave scattering length con-
sidered [Fig. 3(f)], the initial state is small compared to
the harmonic oscillator lengths of the final and initial
traps and the coefficient |c0|2 is large (Table S1 [28]). In
this case, finite-range effects might need to be accounted
for to obtain quantitative agreement between theory and
experiment.

The relative densities, shown in Figs. 3(a)-3(f), reflect
the evolution from a comparatively weakly-interacting
regime, in which the molecular state does not play a spe-
cial role (small |c0|2), to the strongly-interacting regime,
where |c0|2 is appreciable but not dominant, to the
small molecular bound-state regime, where |c0|2 domi-
nates. For large negative as we observe a clear fringe
pattern. Since the wave packet in the relative coordi-
nate would, in the absence of the scatterer, simply re-
peatedly expand and contract, the fringes have to be
caused by scattering events. Figure 4 shows the theo-
retically determined unconvolved relative density along
z for as = −0.651aho,z during the first scattering event,
i.e., for t close to t = Tx/2. At this time, 〈ρ2〉 is quite
small but 〈z2〉 is comparatively large. This implies that
the majority of the wave packet is located away from
the point scatterer. The snapshots in Fig. 4 illustrate
that the fringes emerge as a consequence of the scat-
tering. A portion of the small-ρ wave packet does not
get reflected along the ρ-direction but instead gets “redi-
rected” to leave the small-ρ region along the z-direction
[schematic in Fig. 4(g)]. One can think of the scattering
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FIG. 3: (color online) Experiment-theory comparison after
four two-body collisions. The relative densities nrel(z, t) are
shown for t = 3.5 ms and six different scattering lengths. The
values of as (in units of aho,z) are reported in the upper left
corner of each panel. Circles show experimental data and solid
lines convolved theory results. Typical error bars are shown
for a subset of the experimental data. Note the different y-
scales in the panels.

event as a cross-dimensional redistribution of flux from
the ρ- to the z-direction, creating a newly emitted wave
packet portion along the z-direction that subsequently
interferes with the “background” wave packet portion.
This process is repeated during subsequent scattering
events (t ≈ nTx/2;n = 2, 3, 4, ...), leading to an increas-
ingly complex fringe pattern in the relative density along
z (see also Fig. S3 [28]).

Does the single-particle density, an observable recorded
frequently in cold atom experiments, develop a fringe pat-
tern? The answer is yes but only for very short time pe-
riods over a length scale that is too small to be observed
with the current experimental set-up. Figure 5(a) com-
pares the experimental (diamonds) and convolved the-
oretical (solid line) single-particle densities along z for
t = 2ms and as = −4.64aho,z. At this time, which cor-
responds to two oscillations of 〈ρ2〉 (Fig. 2), the con-
volved single-particle density is smooth. It continues to
be smooth for times t < 0.5Tz [red dashed and green
dot-dashed lines in Fig. 5(a)]. Since the size of the
wave packet is much larger than the Gaussian convo-
lution width σ, σ = 0.542aho,z, the convolved and un-
convolved single-particle density are indistinguishable on
the scale shown in Fig. 5(a). The behavior of the single-
particle density changes drastically when the wave packet
is characterized by a small 〈z2〉 and a small 〈ρ2〉. For
t ≈ 0.5Tz, the unconvolved single-particle density [solid



4

0

0.1

0.2

0.3

n
re

l(z
,t

)a
h

o
,z

-4 -2 0 2 4
z/a

ho,z

0

0.1

0.2

0.3

n
re

l(z
,t

)a
h

o
,z

-4 -2 0 2 4
z/a

ho,z

(a) (b)

(c) (d)

t=0
+ t≈T

x
/4 t≈T

x
/2(e) (f) (g)

0.46T
x

0.5T
x

0.58T
x

0.54T
x

FIG. 4: (color online) Development of fringe pattern in the
relative density during the first collision event (t ≈ Tx/2) for
as = −0.651aho,z. (a)-(d) The lines show the theoretically de-
termined unconvolved relative density nrel(z, t) for the times t
reported in the upper left corner of each panel. (e)-(g) The red
solid lines schematically show the wave packet at (e) t = 0+,
(f) t ≈ Tx/4, and (g) t ≈ Tx/2. The black dashed lines
schematically show the equipotential lines of the final trap.
The arrows schematically indicate the flux.

line in Fig. 5(b)] exhibits a fringe pattern. The fringe pat-
tern exists only for a short time period. For t = 0.501Tz
(not shown), e.g., the oscillations are no longer visible.
Additionally, the limited spatial resolution smoothes out
the fringe pattern of the single-particle density such that
it cannot be observed in the experiment [dotted line
in Fig. 5(b)]. The fringe pattern in the single-particle
density keeps “appearing” and “disappearing” at larger
times. Figure 6(b) shows that the single-particle density
displays intricate fine structure for t = 4Tz (correspond-
ing to 〈z2〉 ≈ 0). Figure 6(d) shows that no fringe pattern
exists in the single-particle density for t = 4.25Tz (cor-
responding to 〈z2〉 ≈ 70a2ho,z). Remarkably, the relative
density along z is characterized by notable fine structure
for both times [Figs. 6(a) and 6(c)].

The discussion surrounding Figs. 3-6(d) illustrates that
collisions impact the single-particle and relative densities
differently. In particular, the relative density displays
an increasingly large number of oscillations with increas-
ing time while the single-particle density is smooth for
all times, except for t ≈ nTz/2. Given the strong time
dependence of the relative density, we ask whether the
system, in the large time limit, approaches thermal equi-
librium. The answer is, as is expected from Ref. [5], that
it does not. To gain insight into the long-time dynamics,
we analyze cycle-averaged observables, i.e., observables
averaged over a period of length Tz [from t = nTz to
t = (n + 1)Tz]. Lines in Figs. 6(e) and 6(f) show the
unconvolved cycle-averaged relative and single-particle
densities 〈nrel(z, t)〉Tz

and 〈n(z1, t)〉Tz
, respectively, for
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FIG. 5: (color online) Single-particle densities for as =
−4.64aho,z. (a) The black solid line and purple diamonds
with error bars show the convolved theoretical data and ex-
perimental results for t = 1.234Tx = 2ms; the red dashed and
green dot-dashed lines show the convolved theoretical data
for t = 3Tx and t = 4.5Tx, respectively. (b) The blue solid
and red dotted lines show, respectively, the unconvolved and
convolved theoretical data for t = 5Tx = 0.5Tz.

as = −4.64aho,z and n = 1, 102, and 104. In both panels,
the three curves are indistinguishable on the scale shown.
Thus, despite the intricate dynamics within each cycle,
the cycle-averaged observables display essentially no dy-
namics. The reason for this is that the normalized near-
est neighbor energy spacings are rather sharply peaked
around 1 (Fig. S1 [28]). We emphasize that this behavior
is also observed for other scattering lengths. The close
to frozen cycle-averaged relative density for large n indi-
cates a lack of thermalization. Indeed, the thermal rel-
ative density [green solid line in Fig. 6(e)] differs visibly
from the calculated cycle-averaged relative densities.

In summary, we have presented a joint theoretical-
experimental study that investigated the wave packet
dynamics of two ultracold atoms following a “violent”
trap quench, which leads to the occupation of many
eigenstates of the post-quench Hamiltonian. Following
the quench, two-body collisions, through their effect on
the structural observables, were observed. The excel-
lent agreement between the experimental and theoreti-
cal data together with the time-resolved single-atom de-
tection with high spatial resolution makes the system a
promising candidate for future dynamical studies, which
are aimed at addressing questions related to thermal-
ization, state engineering, chaos, and integrability. The
set-up also promises to be a fertile playground for test-
ing hydro-dynamical formulations [42–44], which can po-
tentially be used to simulate the dynamics of few- and
many-body systems. Quantitative tests of the hydrody-
namics theory with ultracold atoms may yield insights
into why the dynamics of quark gluon plasmas seems,
somewhat surprisingly, to be governed by hydrodynamic
equations [45, 46].
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FIG. 6: (color online) Unconvolved theory results for the long-
time regime for as = −4.64aho,z. The left and right columns
show the relative and single-particle densities, respectively.
Panels (a) and (b) show snapshots for t = 4Tz while panels (c)
and (d) show snapshots for t = 4.25Tz. Lines in panels (e) and
(f) show cycle-averaged observables for n = 1, 102, and 104.
On the scale shown, the lines are essentially indistinguishable.
For comparison, the green solid line in panel (e) shows the
relative thermal density.
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Two Cold Atoms in a Harmonic Trap, Found. Phys. 28,
549 (1998).

[30] O. Bohigas, M. J. Giannoni, and C. Schmit, Characteri-
zation of Chaotic Quantum Spectra and Universality of
Level Fluctuation Laws, Phys. Rev. Lett. 52, 1 (1984).

[31] O. Bohigas, M. J. Giannoni, and C. Schmit, Spectral
properties of the Laplacian and random matrix theories,
J. Physique Lett. 45, 1015 (1984).

[32] T. H. Ezer and R. Kosloff, An accurate and efficient
scheme for propagating the time dependent Schrödinger

equation, J. Chem. Phys. 81, 3967 (1984).
[33] C. R. Monroe, E. A. Cornell, C. A. Sackett, C. J. Myatt,

and C. E. Wieman, Measurement of Cs-Cs elastic scat-
tering at T = 30 µK, Phys. Rev. Lett. 70, 414 (1993).

[34] H. Wu and C. J. Foot, Direct simulation of evaporative
cooling, J. Phys. B 29, 321 (1996).

[35] G. M. Kavoulakis, C. J. Pethick, and H. Smith, Relax-
ation Processes in Clouds of Trapped Bosons above the
Bose-Einstein Condensation Temperature, Phys. Rev.
Lett. 81, 4036 (1998).

[36] B. DeMarco, J. L. Bohn, J. P. Burke, Jr., M. Holland, and
D. S. Jin, Measurement of p-Wave Threshold Law Using
Evaporatively Cooled Fermionic Atoms, Phys. Rev. Lett.
82, 4208 (1999).

[37] J. Goldwin, S. Inouye, M. L. Olsen, and D. S. Jin, Cross-
dimensional relaxation in Bose-Fermi mixtures, Phys.
Rev. A 71, 043408 (2005).

[38] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of
ultracold atomic Fermi gases, Rev. Mod. Phys. 80, 1215

(2008).
[39] I. Bloch, J. Dalibard, and W. Zwerger, Many-body

physics with ultracold gases, Rev. Mod. Phys. 80, 885
(2008).

[40] Z. Idziaszek and T. Calarco, Two atoms in an anisotropic
harmonic trap, Phys. Rev. A 71, 050701(R) (2005).

[41] Z. Idziaszek and T. Calarco, Analytical solutions for the
dynamics of two trapped interacting ultracold atoms,
Phys. Rev. A 74, 022712 (2006).

[42] J.-S. Caux, B. Doyon, J. Dubail, R. Konik, and Takato
Yoshimura, Hydrodynamics of the interacting Bose gas
in the Quantum Newton Cradle setup, arXiv:1711.00873
(2017).

[43] X. Cao, V. B. Bulchandani, and J. E. Moore, Incomplete
Thermalization from Trap-Induced Integrability Break-
ing: Lessons from Classical Hard Rods, Phys. Rev. Lett.
120, 164101 (2018).

[44] M. Schemmer, I. Bouchoule, B. Doyon, and J.
Dubail, Generalized HydroDynamics on an Atom Chip,
arXiv:1810.07170 (2018).

[45] D. A. Teaney, Quark Gluon Plasma 4, (World Scientific,
Singapore, 2009), p. 207.

[46] The STAR Collaboration, Global Λ hyperon polarization
in nuclear collisions, Nature 548, 62 (2017).


	Acknowledgement
	References

