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Starting with the solution to the Bethe-Salpeter equation for the pion, in a beyond rainbow-ladder
truncation to QCD’s Dyson-Schwinger equations (DSEs), we determine the pion’s lz = 0 and |lz | = 1
leading Fock-state light-front wave functions (LFWFs) [labeled by ψlz (x, k2

T )]. The leading-twist time-
reversal even transverse momentum dependent parton distribution function (TMD) of the pion is then
directly obtained using these LFWFs. A key characteristic of the LFWFs, which is driven by dynamical
chiral symmetry breaking, is that at typical hadronic scales they are broad functions in the light-cone
momentum fraction x. The LFWFs have a non-trivial (x, k2

T ) dependence and in general do not factorize
into separate functions of each variable. For k2

T . 1GeV2 the k2
T dependence of the LFWFs is well

described by a Gaussian, however for k2
T & 10GeV2 these LFWFs behave as ψ0 ∝ x(1 − x)/k2

T and
ψ1 ∝ x(1 − x)/k4

T , and therefore exhibit the power-law behavior predicted by perturbative QCD. The pion’s
TMD naturally inherits many features from the LFWFs. The TMD evolution of our result is studied using
both the b∗ and ζ prescriptions which allows a qualitative comparison with Drell-Yan data.

Light-front quantization and the associated light-front
wave functions (LFWFs) provide a powerful framework
with which to study quantum chromodynamics (QCD) [1, 2].
Hadron observables such as form factors, parton distribu-
tion functions (PDFs), and their multi-dimensional coun-
terparts such as generalized and transverse momentum de-
pendent PDFs (TMDs) can each be expressed as overlaps of
LFWFs [3, 4]. Therefore LFWFs allow features of apparent
disparate hadron observables to be straightforwardly related
to underlying quark-gluon dynamics in a QCD Fock-state
expansion. In principle, the LFWFs can be computed by
diagonalizing the light-cone QCD Hamiltonian operator, us-
ing methods such as discretized light-cone quantization [5]
and basis light-front quantization [6, 7], or by effective
interaction methods such as holographic QCD [8].

Another approach used to study QCD, which is explicitly
Poincaré-covariant, is provided by judicious truncations to
QCD’s Dyson-Schwinger equations (DSEs) [9–11]. In the
DSE framework hadron states are obtained as solutions
to Poincaré-covariant bound-state equations such as the
Bethe-Salpeter and Faddeev equations [12, 13]. Insights
into numerous aspects of hadron structure have been re-
vealed using the DSEs [11, 14], with particular success in
understanding the pion as both a relativistic bound-state of
a dressed quark and dressed antiquark, and the Goldstone
mode associated with dynamical chiral symmetry break-
ing (DCSB) in QCD [11, 15–17]. DSE solutions to the
Bethe-Salpeter equation (BSE), which naturally contain an
infinite number of Fock-states and can therefore encapsulate
key emergent QCD phenomena such as DCSB and quark
confinement, provide an excellent starting point from which
to extract the pion’s LFWFs. In particular, the properties
of the LFWFs can then be clearly connected to underlying
quark-gluon dynamics as expressed in the dressing func-
tions for propagators and vertices. The calculation of the
pion’s leading Fock-state LFWFs using the DSEs, and the
application of these LFWFs to a calculation of the pion’s
leading-twist time-reversal even TMD is the focus of this

paper. Such a study is timely because the proposed electron-
ion collider [18] could study the partonic structure of the
pion and kaon [19].
In the light-front formalism a hadron state can be ex-

pressed as the superposition of Fock-state components clas-
sified by their orbital angular momentum projection lz [20].
For the pion the minimal (|q̄q〉) Fock-state configuration
reads [20, 21] |π+(p)〉 = |π+(p)〉lz=0 + |π

+(p)〉 |lz |=1. The
non-perturbative content of each state is contained in the
LFWFs [4], labeled by ψ0(x, k2

T ) for lz = 0 and ψ1(x, k2
T )

for |lz | = 1, where kT is the transverse momentum of the
quark and x = k+

p+
is its light-cone momentum fraction.

The pion’s minimal Fock-state LFWFs can be obtained
from the pion’s Bethe-Salpeter wave function via [22]

ψ0(x, k2
T ) =

√
3 i

∫
dk+dk−

2 π
× TrD

[
γ+γ5 χ(k, p)

]
δ
(
k+ − x p+

)
, (1)

ψ1(x, k2
T ) = −

√
3 i

∫
dk+dk−

2 π
1
k2
T

× TrD
[
iσ+i k i

T γ5 χ(k, p)
]
δ
(
k+ − x p+

)
. (2)

The Bethe-Salpeter wave function for the π+ is de-
fined by the quark-antiquark correlator χ(k, p) =∫

d4z e−ik ·z 〈0|Tu(z) d̄(0)|π+(p)〉 [23, 24] and can be ex-
pressed as χ(k, p) = S(k) Γ(k, p) S(k − p), where S(k) is
the dressed quark propagator and Γ(k, p) the pion’s homo-
geneous Bethe-Salpeter amplitude [9, 25].
The BSE, whose solution gives the wave function χ(k, p),

self-consistently sums of an infinite number of Fock com-
ponents. For example, in the rainbow-ladder trunction of
QCD’s DSEs1 χ(k, p) not only contains the minimal |q̄q〉
Fock-state but also the Fock components with any number of
gluons: |q̄qg . . .〉. In the DSEs it is this sum over the infinite
tower of gluons that gives raise to emergent phenomena
such as DCSB and confinement, which is then encoded in

1 In this work will use a beyond rainbow-ladder trunction to the DSEs called
the DCSB-improved truncation.
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χ(k, p). A key advantage of projecting out the LFWFs from
the Bethe-Salpeter wave function, as done in Eqs. (1) and
(2) for the minimal Fock-state, is that effects from these
emergent phenomena are encoded in all LFWFs. In addi-
tion, an analogous procedure to that defined in Eqs (1) and
(2) can be used to obtain higher Fock-state LFWFs, such
as those that correspond to |q̄qg〉 states, via project from
χ(k, p) and elements of its Bethe-Salpeter kernel. Since
χ(k, p) is the same for each LFWF projection, such a method
leaves the LFWFs corresponding to other Fock components
unchanged. Therefore, this method in principle allows for
the self-consistent and systematic solution of the tower of
LFWFs, allowing the importance of higher Fock compo-
nents in hadron structure and reactions to be systematically
studied.
The pion’s Bethe-Salpeter wave function can be calcu-

lated within the DSE framework [26], via a self-consistent
solution to the quark gap equation for S(k), and the homo-
geneous BSE which gives Γ(k, p). To solve these equations
a truncation to the interaction kernel must be employed,
such that the key symmetries of QCD are maintained. In
the context of the pion the axial-vector Ward-Takahashi
identity plays an important role [27], as it is an expression
of chiral symmetry and its dynamical breaking [28]. The
simplest symmetry-preserving DSE truncation is rainbow-
ladder [27, 29, 30]. Here we use a modern extension
known as the DCSB-improved truncation, that includes an
anomalous chromomagnetic moment term in the dressed
quark-gluon vertex [31], which in the chiral limit can only
exist through DCSB. This truncation provides the most real-
istic description of the pion currently available within the
DSEs formalism [11].
The DSEs are formulated in Euclidean space and

therefore a direct calculation of light-cone dominated
quantities is challenging. However, an arbitrary k2

T -
dependent moment of the pion’s LFWFs, defined by
〈xm〉lz (k

2
T ) =

∫ 1
0 dx xm ψlz (x, k

2
T ) can be directly calcu-

lated, and the LFWFs for the pion can then be accurately
reconstructed from these moments. In fact, an arbitrary
moment of a LFWF can be expressed as 〈xm〉lz (k

2
T ) =∫ 1

0 dα αm
∫

dβdγ flz (α, k
2
T , β, γ) and therefore the LFWF

is identified as ψlz (x, k
2
T ) =

∫
dβdγ flz (x, k

2
T , β, γ) [22, 32].

To aid the calculation of the moments we use an accurate
parametrization of numerical solutions to the gap and BSEs
in the DCSB-improved truncation to the DSEs [17, 31]. The
dressed quark propagator is parametrized with two pairs
of complex conjugate poles [33, 34]: S(k) =

∑2
i=1[zi/(i/k +

mi) + z∗i /(i/k + m∗i )] where zi and mi are complex numbers
determined by fitting to the numerical DSE solution to the
gap equation. The general Bethe-Salpeter amplitude for the
pion reads [15, 25]: Γπ(k, p) = γ5

[
iE(k, p) + /p F(k, p) +

/k G(k, p)+ [/p, /q]H(k, p)
]
. We retain the dominant E and F

amplitudes, and further details about the model are provided
in the supplementary material and Refs. [17, 31].
Results for the pion’s minimal Fock-state LFWFs are illus-

trated in Fig. 1, where the LFWFs satisfy the normalization
condition

∫ 1
0 dx

∫
d2kT

(2π)3

[
|ψ0(x, k2

T )|
2 + k2

T |ψ1(x, k2
T )|

2
]
= 1.

For each x, the k2
T dependence of the LFWFs exhibits a

Gaussian-like behavior for k2
T . 1GeV2, a transition then

begins to occur and for k2
T & 10GeV2 the LFWFs become

ψ0(x, k2
T ) ∝ x(1 − x)/k2

T and ψ1(x, k2
T ) ∝ x(1 − x)/k4

T ,
which matches the power-law behavior predicted by pertur-
bative QCD [21]. The factorization between x and k2

T is
only seen in the scaling regime, where the onset reflects the
ultraviolet behavior of the Bethe-Salpeter dressing functions
which behave as E, F ∼ 1/k2 for k2 & 10GeV2 [27] (k is
the relative momentum).
An important characteristic of our LFWF results, when

viewed as a function of x, is that they are broad with
significant support near the x = 0, 1 end-points for k2

T .
1GeV2. As discussed in Ref. [17] in the context of the pion’s
parton distribution amplitude (PDA), this broadening of
the LFWFs is directly linked to DCSB, however this effect
diminishes for k2

T � Λ
2
QCD where the x-dependence of both

LFWFs is the same as the asymptotic pion PDA [35]. This
manifestation of DCSB on the light-front will therefore have
a material impact on observables sensitive to the LFWFs in
the region k2

T . 1GeV2. The lz = 0 LFWF is concave in
x with a maximum at x = 1/2 for all k2

T , whereas orbital
angular momentum effects causes the |lz | = 1 LFWF to
have a slight double-humped structure for quark transverse
momentum in the range 0.5 . k2

T . 5GeV2, which is
evident in Fig. 1. Near the x = 0, 1 end-points we find
that each LFWF behaves linearly as a function of x, that
is, as x → 1 we have ψlz (x, k

2
T ) ∼ 1 − x, with analogous

results near x → 0 because ψlz (x, k
2
T ) = ψlz (1 − x, k2

T ).
This linear behavior in 1 − x is a necessary property of the
LFWFs if they are to give a pion TMD or PDF behaving as
f (x) → (1 − x)2 near x = 1, as predicted by perturbative
QCD [36–38].
With the pion’s LFWFs in hand it straightforward to

determine properties of the pion. We focus on the pion’s
leading-twist time-reversal even TMD which in terms of the
pion’s minimal Fock-state LFWFs reads [4]

f µ0
π (x, k2

T ) =
[
|ψ

µ0
0 (x, k

2
T )|

2 + k2
T |ψ

µ0
1 (x, k

2
T )|

2] /(2π)3, (3)

where we have made explicit the renormalization scale
dependence. At the inital renormalization scale (µ0) the
pion’s valence quark PDF is related to the TMD by f µ0

π (x) =∫
d2kT f µ0

π (x, k2
T ), where the normalization condition for

the LFWFs guarantees baryon number conservation.2 The
symmetry under x → 1 − x of the LFWFs ensures 〈x〉µ0 =

0.5 and therefore the two valence quarks carry all the light-
cone momentum. This is to be expected because only the
leading Fock-state LFWFs are used to determine the pion’s
PDF. By associating the renormalization scale with the
resolving scale (µ2

0 = Q2), it is clear that as µ2
0 gets larger

2 This naive relation between the TMD and PDF is only valid at the model
scale, since evolution to a scale µ , µ0 breaks this correspondence.
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Figure 1. Upper panel: DSE result for the pion’s lz = 0 minimal
Fock-state LFWF. Lower panel: Analogous result for the pion’s
|lz | = 1 minimal Fock-state LFWF. The LFWFs are given in units
of GeV−2 and k2

T in GeV2.

higher Fock-states play an increasingly important role, and
therefore the minimal Fock-state contributions calculated
here can only dominate at a low resolving scale [20]. The
renormalization scale associated with our DSE calculation
is determined such that the momentum fraction carried by
the valence quarks agrees with results from a πN Drell-Yan
analysis: 2 〈x〉v = 0.47(2) [39, 40] at a scale ofQ2 = 4GeV2.
NLO DGLAP [41] gives µ0 = 0.52GeV.
Our DSE result for the time-reversal even u-quark TMD

in the π+, obtained from the LFWFs using Eq. (3), is
given in the upper panel of Fig. 2. These calculations
are performed with equal current quark masses. Several
features of the LFWFs are immediately reflected in the TMD
at the hadronic scale, notably in the limit x → 1 the TMD
behaves as f uπ (x, k

2
T ) ∝ (1 − x)2 for all k2

T , in agreement
with perturbative QCD [38]. As k2

T becomes large our
TMDs exhibits two scaling regimes, for k2

T & 10GeV2 the
pion’s TMD has a power-law behavior of f uπ (x, k

2
T ) ∝ 1/k6

T

which reflects the dominance of ψ1(x, k2
T ) in this region.

The lz = 0 LFWF only begins to dominate the TMD for
k2
T & 100GeV2, where we obtain our asymptotic result for

the TMD: f uπ (x, k
2
T ) ∝ x2(1 − x)2/k4

T . At the low hadron
scale our DSE result for the pion’s TMD is a broad unimodal
function of x for k2

T . 0.7GeV2, however in the range 0.7 .
k2
T . 5GeV2 the slight double-humped feature of ψ1(x, k2

T )

Figure 2. Upper panel: DSE result for the time-reversal
even u-quark TMD of the pion, f uπ (x, k

2
T ), at the model scale

of µ2
0 = 0.52GeV2. Lower panel: Analogous result evolved to a

scale of µ = 6GeV using TMD evolution with the b∗ prescription
and g2 = 0.09GeV [42]. The TMDs are given in units of GeV−2

and k2
T in GeV2.

manifests in the TMD. This double-humped structure is seen
more prominently in some light-front constituent quark [4]
and holographic QCDmodels [43]. Because our TMD result
scales as f uπ (x, k

2
T ) ∝ 1/k4

T , our result for the average k2
T

of the TMD is logarithmically divergent if
〈
k2
T

〉
is defined

in the usual way [44]. We therefore study two methods:
fitting a Gaussian ansatz to our TMD for k2

T < 1GeV2 gives〈
k2
T

〉
= 0.16GeV2, and using the Bessel-weighted definition

of Ref. [45] with bT = 0.3 fm gives
〈
k2
T

〉
= 0.19GeV2 at the

model scale. Therefore, the average transverse momentum
is typical of the infrared scale of the dressed quark mass.
To compare our results with data it is essential to perform

TMD evolution [46, 47]. TMD evolution is governed by
renormalization group equations involving two scales, µ and
ζ , which are set to the hard scale µ2 = ζ = Q2 [48]. The
lower panel of Fig. 2 presents our pion TMD result evolved
to a scale of µ = 6GeV, which is a typical scale associated
with the E-615 pion-induced Drell-Yan experiment [49].
The illustrated result uses the b∗-prescription [50], where
we follow closely the implementation of Refs. [42, 43],
and to parameterize the non-perturbative behavior of the ζ
evolution kernel [47] we choose g2 = 0.09 in accordance
with Ref. [43]. The effect of the TMD evolution is dramatic,
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shifting significant strength to small x and large k2
T , with a

factor of 10 reduction in the magnitude of the TMD near
x ∼ 1/2, k2

T ∼ 0 compared to the model scale result. For
the evolved TMD we find

〈
k2
T

〉
= 0.69GeV2 using the

Gaussian fit method, and the Bessel-weighted definition
with bT = 0.3 fm gives

〈
k2
T

〉
= 0.49GeV2.

To attempt a quantitative comparison of our results with
data we study the transverse momentum dependence char-
acterized by a fitting function P(xF, pT ; mµµ) measured in
the E-615 pion-induced Drell-Yan experiment on a tungsten
target [49, 51, 52]. This function is defined by

d3σ

dxπdxNd pT
=

d2σ

dxπdxN
P(xF, pT ; mµµ), (4)

where xπ, xN are the Bjorken scaling variables of the pion
and nucleon, xF = xπ − xN , pT is the transverse momentum
of the produced dilepton pair, andm2

µµ = s xπ xN is the invari-
ant mass-squared of the dilepton pair where s = (pπ + pN )

2

is the center-of-mass energy squared. For the fitting
function P we have the relation P(xF, pT ; mµµ)/|pT | ∝
F1
UU (xπ, xN, pT ), where within the TMD factorization

scheme, at leading twist, and including only the W-term
in the cross-section, the unpolarized Drell-Yan structure
function is given by [4, 52, 53]

F1
UU (xπ, xN, pT ) =

1
Nc

∑
q

e2
q

∫
d2kT d2`T

× δ(pT − kT − `T ) f q̄π (xπ, k2
T ) f q

A
(xN, `2

T ),

(5)
where the sum is over quark flavors q = u, d, and we ap-
proximate the unpolarized TMD of the tungsten target by
a sum over nucleon TMDs: f q

A
(x, `2

T ) = Z/A f qp (x, `2
T ) +

N/A f qn (x, `2
T ). To evaluate F1

UU (xπ, xN, pT ) and thereby
make a qualitative comparison with data for P(xF, pT ; mµµ)

obtained in the E-615 experiment [49] we combine our DSE
results for f qπ (xπ, k2

T ) with two sets of empirical extrac-
tions of f qp (x, `2

T ) and f qn (x, `2
T ) from Refs. [42] and [54]

respectively.
Results for the fitting function P(xF, pT ; mµµ)/|pT | are

presented in Fig. 3. The solid lines are empirical results
from Ref. [49] for xF = 0, 0.25, 0.5 where empirically
mµµ ' 6GeV and

√
s = 22GeV. The shaded regions in

Fig. 3 are our calculated results for N F1
UU (xπ, xN, pT ) for

0 6 g2 6 0.13GeV, where for each g2 the normalization N
is chosen so that this result equals P(xF, pT ; mµµ)/|pT | at
|pT | = 0.125GeV, which represents the lowest |pT | value
in the E-615 data set [55]. Since Eq. (5) only describes the
W-term we restrict |pT | 6 0.2 mµµ following the finding
of Ref. [54]. To study the “prescription dependence” of
the TMD evolution, we also present evolved TMD results
using the ζ-prescription [54] as the dashed lines in Fig. 3,
where we have taken g2 = 0.3 As made clear from Fig. 3

3 The quantity g2 is the rapidity anomalous dimension, an inherently non-
perturbative parameter that is separate from the TMDs but enters the TMD
evolution equations. For the TMD evolution we follow closely Ref. [42].
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Figure 3. The solid lines are empirical results from the E-
615 experiment [49] for P(xF, pT ; mµµ)/|pT | (no uncertainties
are provided) and the curves in ascending order correspond to
xF = 0, 0.25, 0.5. The neighboring shaded bands correspond
to the same xF values, and are our results evolved using the b∗-
prescription as outlined in Ref. [42], with the non-perturbative
parameter g2 in the range 0 6 g2 6 0.13 (the lower boundary
corresponds to g2 = 0). The dashed lines are obtained using the
ζ-prescription from Ref. [54] with g2 = 0. In this prescription
g2 is much more constrained, with the small uncertainty easily
contained within the existing shaded region.

the two evolution prescriptions give similar results, and
our results for the fitting function P at xF = 0, 0.25 are in
good agreement with E-615 data. For xF = 0.5 we find a
discrepancy with data of around 30%, however for each xF
our results favor a small value for g2 as suggested in Ref. [54].
Agreement with data could be improved by increasing the
initial scale of the DSE calculations, which is an indication
that higher Fock-states may play an important role.
Using the DCSB-improved truncation to QCD’s DSEs

we have determined the pion’s minimal Fock-state LFWFs
from the solution to the BSE, and from these LFWFs the
pion’s leading-twist time-reversal even TMD. The pion –
as the Goldstone boson associated with DCSB in QCD
– provides the ideal environment to study the impact of
DCSB on hadron structure. We find that DCSB effects
produce broad unimodal LFWFs and TMD, when viewed
as a function of x, for small k2

T . In this regime the k2
T

dependence of the pion’s LFWFs and TMD, for a given
x, is well described by a Gaussian, however the x and k2

T
does not factorize. These DCSB driven effects diminish
slowly as k2

T becomes large, where for k2
T & 10GeV2 the

LFWFs scale as ψ0 ∝ x(1 − x)/k2
T and ψ1 ∝ x(1 − x)/k4

T
in agreement with the power-law behavior predicted by
perturbative QCD. These results illustrate how a momentum
tomography for the pion can shed light on hadron structure
effects driven by DCSB and also help expose the transition
from the non-perturbative to perturbative regimes in QCD.
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