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Topological antiferromagnetic (AFM) spintronics is an emerging field of research, which exploits the Néel vector to 
control the topological electronic states and the associated spin-dependent transport properties. A recently discovered 
Néel spin-orbit torque has been proposed to electrically manipulate Dirac band crossings in antiferromagnets; however, 
a reliable AFM material to realize these properties in practice is missing. In this letter, we predict that room temperature 
AFM metal MnPd2 allows the electrical control of the Dirac nodal line by the Néel spin-orbit torque. Based on first-
principles density functional theory calculations, we show that reorientation of the Néel vector leads to switching between 
the symmetry-protected degenerate state and the gapped state associated with the dispersive Dirac nodal line at the Fermi 
energy. The calculated spin Hall conductivity strongly depends on the Néel vector orientation and can be used to 
experimentally detect the predicted effect using a proposed spin-orbit torque device. Our results indicate that AFM Dirac 
nodal line metal MnPd2 represents a promising material for topological AFM spintronics. 

The discovery of novel quantum phenomena in solids, resulting 
from the interplay between the electron, spin, and orbital degrees 
of freedom, enriches a continuously evolving field of spintronics 
and opens opportunities to enhance the efficiency of electronic 
devices [1]. Recently, antiferromagnetic (AFM) spintronics has 
emerged as a subfield of spintronics, where an AFM order 
parameter also known as the Néel vector is exploited to control 
spin-dependent transport properties [2-4].  Due to being robust 
against magnetic perturbations, producing no stray fields, and 
exhibiting ultrafast dynamics, antiferromagnets can serve as 
promising functional materials for spintronic applications, which 
may expand to very diverse areas ranging from terahertz 
information technologies to artificial neural networks [5]. 

The interest to AFM spintronics has largely been stimulated 
by the recent discovery of electrical switching of a collinear 
antiferromagnet by spin-orbit torque [6]. It is known that spin-
orbit torques can originate from the inverse spin-galvanic effect 
[7 ], which occurs in magnetic materials with broken space-
inversion symmetry due to spin-orbit coupling (SOC) [8-11]. If 
an antiferromagnet is formed of two antiparallel-aligned spin 
sublattices, whose atomic structure has broken space-inversion 
symmetry but the sublattices form space-inversion partners, the 
inverse spin-galvanic effect produces a nonequilibrium local 
spin polarization of opposite sign on the two spin sublattices. The 
resulting staggered effective magnetic field generates an 
alternating in sign spin-orbit torque, known as the Néel spin-
orbit torque, on the sublattice magnetizations, thus acting with a 
torque on the Néel vector [12,13]. The control of the Néel vector 
by electric current has been realized using tetragonal CuMnAs 
[6] and Mn2Au [14 ] antiferromagnets, thus demonstrating a 
viable approach to the AFM-based memories [15] and providing 
a route to ultra-fast spintronic devices [4,5]. 

In parallel with these developments, there has been 
increasing interest in materials and structures where quantum 

effects are responsible for novel physical properties, revealing 
the important roles of symmetry, topology, and dimensionality 
[ 16 ]. Among such quantum materials are graphene [ 17 ], 
topological insulators [18], Dirac and Weyl semimetals [19],  and 
beyond [20]. These materials are characterized by non-trivial 
fermionic excitations resulting from discrete band crossings as 
well as continuous degenerate states, such as the nodal lines 
[21,22] and their exotic connections [23,24]. Using the unique 
properties of the novel fermionic states has been envisioned for 
spintronics applications [25,26]. A particular example is the 
demonstration of significantly enhanced spin-orbit torques in 
ferromagnet/topological insulator heterostructures [27,28]. 

The discovery of the electrical control of the Néel vector 
[6,14] opens a new direction in spintronics, involving the 
interplay between the topological electronic states and 
antiferromagnetism [29, 30]. A notable example is the proposed 
control of Dirac quasiparticles in an antiferromagnet by 
reorientation of the Néel vector [31]. ON and OFF switching of 
the symmetry protection of the Dirac band crossing has been 
predicted in an AFM Dirac semimetal, such as orthorhombic 
CuMnAs [ 32 ], resulting in the topological metal-insulator 
transition (Figs. 1(a-d)) and topological anisotropic 
magnetoresistance [31]. 

To realize these properties in practice, however, the Dirac 
quasiparticles are required to appear precisely at the Fermi 
energy (EF), demanding a strict control of the stoichiometry and 
structural quality of the sample, which is not easy to achieve in 
real experimental conditions. On the other hand, there exist a 
class of quantum materials exhibiting Dirac nodal lines within a 
broad energy window including those crossing the Fermi energy. 
In an AFM material with such a nodal line, the Néel spin-orbit 
torque control of the Dirac band crossings would be much easier 
to realize and detect in transport measurements (Figs. 1(e,f)).  
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In this letter, we predict that AFM metal MnPd2 has the 
desired properties: it has the required symmetry to support the 
Néel spin-orbit torque and holds a dispersive Dirac nodal line 
across the Fermi energy. The reorientation of the Néel vector 
leads to switching between the symmetry protected degenerate 
state and the gapped state associated with the Dirac nodal line. 
We show that the spin Hall conductivity of MnPd2 strongly 
depends on the Néel vector orientation and can be used to detect 
the effect. MnPd2 has been synthesized in the laboratory, has the 
Néel temperature (TN) well above the room temperature, and thus 
represents a new promising material for topological 
antiferromagnetic spintronics. 

Figure 2(a) shows the crystal structure of orthorhombic 
MnPd2 which belongs to nonsymmorphic space group Pnma 
[ 33 ]. In the paramagnetic phase, MnPd2 has time-reversal 
symmetry T, space-inversion symmetry P, three glide planes, 
and three screw axes. Neutron diffraction reveals a collinear 
AFM ordering up to TN  = 415 ± 10 K. In the ground state, the 
Néel vector lies along the [010] direction with the magnetic 
moments of the Mn atoms being parallel in the (010) planes but 
antiparallel between the successive (010) planes [33]. As seen 
from Fig. 2(a), the inversion-partner sites are occupied by the Mn 
atoms with oppositely oriented magnetic moments. Such an 
AFM ordering breaks both the P and T symmetries but the 
combined PT symmetry is preserved. This condition is sufficient 
to produce the Néel spin-orbit torque on the Néel vector by 
passing an electric current [31]. Our calculation of the total 

energy predicts the lower energy for the Néel vector (𝑛"⃗ ) lying in 
the (100) plane with the magnetocrystalline anisotropy energy of 
𝐸[&&'] − 𝐸[&'&] = 0.14	meV/f.u. This result is consistent with the 
experiment [33], showing that the easy axis lies along the [010] 
direction (𝑛"⃗ ∥ [010]). The calculated magnetic moment of 3.89 
µB per Mn atom is also in agreement with that (4.0 µB) found by 
this experiment. 

The AFM ordering determines the magnetic space group 
symmetry of MnPd2, as shown in Table S1 in the Supplemental 
Material [34]. It is evident that the nonsymmorphic symmetries 
can be turned on and off by rotating the Néel vector. As we will 
see below, this leads to the ability to close and open a gap at the 
Dirac nodal line and thus to control spin-dependent transport 
properties of MnPd2.  

Our density functional theory (DFT) calculations [34] 
predict that around the Fermi energy, the electronic band 
structure of MnPd2 is represented by the Mn and Pd d-orbitals 
(Fig. S1). Due to the preserved PT symmetry, every band is 
doubly degenerate. As seen from Fig. S2, there are three bands 
crossing EF. Below we focus on the bands around EF lying in the 
𝑘2 =

3
4
 plane, which form a Dirac nodal line.  

Figures 2(c,d) show the calculated band structure along the 
high symmetry paths in the 𝑘2 =

3
4
  plane for 𝑛"⃗ ∥ [001] and 𝑛"⃗ ∥

[010] , respectively. For 𝑛"⃗ ∥ [001] , there are three four-fold 
degenerate crossings points: at 𝐸 = −0.071 eV along the Z-U 
line, at 𝐸 = 0.234 eV along the T-Z line, and at 𝐸 = 0.192 eV 
along the Z-R line (indicated by arrows in Fig. 2(c)). These 
crossings are protected by the glide symmetry 𝑔2 =
{𝑀2|(½, 0,½)} [34], leading to a loop-like Dirac nodal line in 
the 𝑘2 =

3
4
 plane surrounding the Z point (Fig. 2(e)). This Dirac 

nodal line is dispersive covering a wide energy window ranging 
from 𝐸 ≈ −0.07 eV to 𝐸 ≈ 0.45 eV. 

Reorientation of the Néel vector breaks the 𝑔2  symmetry 
(Table S1) and opens an energy gap along the Dirac nodal line, 
as seen from Figs. 2(d,f) for 	𝑛"⃗ ∥ [010]. Although the gaps at the 
crossing points along the Z-U and T-Z directions are relatively 
small (a few meV), along the Z-R direction the gap exceeds 30 
meV (Fig. 2(d)). We find that along the Dirac nodal line shown 
in Fig. 2(f), the gap varies from about 1 meV to 45 meV and is 
about 20 meV at the Fermi energy. Thus, we conclude that 
MnPd2 exhibits the sought material properties: it has the required 
symmetry to support the Néel spin-orbit torque and holds a 
dispersive Dirac nodal line across the Fermi energy, which is 
gapped by the reorientation of the Néel vector.  

Along with the electronic structure of MnPd2, the Néel 
vector controls its spin-dependent transport properties, such as 
the spin Hall effect [35]. Below we calculate the spin Hall 
conductivity of MnPd2, and show that it is strongly affected to 
the orientation of the Néel vector.   

 

FIG. 1. Controlling a Dirac point or a Dirac nodal line by the Néel 
vector. (a,b) Schematics of an antiferromagnet with two magnetic 
sublattices (denoted as MnA and MnB) connected by the PT symmetry 
for two orientations of the Néel vector, preserving (a) and breaking (b) 
glide symmetry gz (indicated by the dotted lines). Red arrows indicate 
the magnetic moments. (c-f) Schematics of the band structure around 
the Fermi energy (EF) for a Dirac point (c, d) or a dispersive Dirac nodal 
line (e, f) for preserved (c, e) or broken (d, f) glide symmetry gz.  
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The spin Hall conductivity is given by [35]   

𝜎EFG =
𝑒I

ℏ K
𝑑M𝑘"⃗
(2𝜋)MO𝑓QG"⃗ ΩQ,EF

G S𝑘"⃗ T,
Q

																		(1) 

ΩQ,EFG S𝑘"⃗ T = −2𝐼𝑚 O
W𝑛𝑘"⃗ X𝐽EGX𝑛Z𝑘"⃗ [W𝑛Z𝑘"⃗ X𝑣FX𝑛𝑘"⃗ [

S𝐸QG"⃗ − 𝐸Q]G"⃗ T
I , (2)

Q]^	Q

 

where 𝑓QG"⃗  is the Fermi-Dirac distribution function for band n 
and wave vector 𝑘"⃗  , ΩQ,EFG S𝑘"⃗ T is the spin Berry curvature, 𝐽EG =
_
`{𝑣E, 𝑠G} is the spin-current operator, 𝑣E and  𝑠G are velocity and 
spin operators, respectively, and 𝑖, 𝑗, 𝑘	 = 	𝑥, 𝑦, 𝑧.      

 The calculated spin Hall conductivities of MnPd2 for 𝑛"⃗ ∥
[001] and 𝑛"⃗ ∥ [010] are given in Table 1. Overall, we find that 
the predicted magnitude of the spin Hall conductivity in MnPd2 
is comparable to that in Ta [36,37], a widely used spin current 
source in spin-orbit torque devices [38], but somewhat smaller 
than that predicted for Pt [39]. Here, we focus on 𝜎gh2  as a 
representative component of the spin Hall conductivity. The 
other components are discussed in Supplemental Material [34].   

As follows from Eqs. (1,2), the spin Hall conductivity is 
strongly affected by band anticrossings, where the spin Berry 
curvature is significantly enhanced when the energy separations 
between bands 𝑛  and 𝑛Z  at a given 𝑘"⃗  point are small. It is 

expected, therefore, that switching between the degenerate and 
gapped states of the Dirac band can lead to a notable change in 
the spin Hall conductivity, even if such a switchable Dirac point 
or a Dirac nodal line is buried behind trivial Fermi surfaces 
[40,41].   

In Figs. 3(a,b), we compare the calculated spin Berry 
curvature Ωgh2 	in the 𝑘2 =

3
4
	 plane at E = EF for 𝑛"⃗ ∥ [001] and 

𝑛"⃗ ∥ [010]. We find that while Ωgh2   is small for 𝑛"⃗ ∥ [001] in the 
whole 𝑘2 =

3
4
	 plane (Fig. 3(a)), it exhibits a notable peak for 𝑛"⃗ ∥

[010] (Fig. 3(b)). Such a sharp peak appears at different energies 
and is associated with the Dirac nodal line. As seen from Fig. 
3(c), at the points where the nodal line crosses an equi-energy 
plane the spin Berry curvature is strongly enhanced (as is 
indicated by the color contrast in Fig. 3(c)). Such a sizable 
change in the spin Berry curvature affects the spin Hall 
conductivity. As is evident from Fig. 3(d), within the energy 

TABLE 1. Calculated spin Hall conductivities 𝜎EFG  (in units W-1 

cm-1) for two different orientations of the Néel vector in 
orthorhombic MnPd2: 	𝑛"⃗ ∥ [001] and		𝑛"⃗ ∥ [010]. 

𝑛"⃗  𝜎gh2  𝜎hg2  𝜎g2
h  𝜎2g

h  𝜎h2g  𝜎2hg  

[001] 155.9 -170.7 -104.4 175.2 120.6 -66.7 
[010] 232.0 -176.0 -134.9 138.5 112.7 -66.0 

 

 

FIG. 2. Néel vector controlled Dirac nodal line in MnPd2. (a) Crystal structure of MnPd2. Two magnetic sublattices MnA and MnB are connected by 
the PT symmetry. Red arrows indicate the Mn magnetic moments. (b) Schematic of the glide 𝑔2 symmetry for 𝑛"⃗ ∥ [001], which connects two Mn 
atoms in the same sublattice via mirror reflection 𝑀2 followed by translation (½, 0,½) (indicated by the black dashed lines). (c, d) Band structure 
of MnPd2 in the 𝑘2 =

3
4
 plane for 𝑛"⃗ ∥ [001] (c) and 𝑛"⃗ ∥ [010] (d). The two bands forming the Dirac nodal line are indicated by dark red color. 

Arrows in (c) indicate the symmetry protected Dirac band crossings. (e, f) Energy dispersions of the two crossing bands in the 𝑘2 =
3
4
 plane for  𝑛"⃗ ∥

[001] (e) and 𝑛"⃗ ∥ [010] (f). The Dirac nodal line and its projection to the 𝑘2 =
3
4
  plane are shown by the purple and red lines, respectively.   
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window corresponding to the Dirac nodal line, 𝜎gh2  is much 
larger for 𝑛"⃗ ∥ [001] than for 𝑛"⃗ ∥ [010], which is due to the gap 
opening along the dispersive Dirac nodal line as the result of the 
Néel vector reorientation.   

Rotation of the Néel vector in the (100) plane of MnPd2 

changes the spin Hall conductivity 𝜎gh2  in an oscillatory fashion 
(Figs. 4(a,b)). The predicted variation of 𝜎gh2 , reaching the 
maximum value of about 50%, can be used to experimentally 
detect the effect of the Néel spin-orbit torque on the Néel vector 
in MnPd2, as discussed below. 

We note that using anisotropic magnetoresistance [6] to 
detect the effect is problematic due to the uniaxial 
magnetocrystalline anisotropy of MnPd2 causing the 𝑛"⃗ ∥ [010] 
state to have lower energy than the 𝑛"⃗ ∥ [001] state. As a result, 
affecting the Néel vector can only be produced under conditions 
of a large steady charge current (~108-109 A/cm2) generating the 
Néel spin-orbit torque. Switching off the charge current leads to 
the relaxation of the Néel vector back to the equilibrium 𝑛"⃗ ∥
[010] direction. This is different from tetragonal CuMnAs [12], 
which exhibits the bi-axial anisotropy, and thus the Néel vector 
remains stable after its 90º rotation by the Néel spin-orbit torque 
and then turning off the charge current.   

The spin Hall conductivity under the influence of the Néel 
vector reorientation can be measured using a spin-orbit torque 
device shown in Fig. 4c. Here a ferromagnetic layer is deposited 
on top of the MnPd2 (100) surface, forming a 
MnPd2/ferromagnet bilayer. Charge current Jc along the [010] 
direction is driven by an external source to reorient the Néel 
vector from the easy [010] axis towards the [001] direction. At 

the same time, the charge current Jc generates spin Hall current 
Js flowing in the [100] direction and carrying a spin polarization 
along the [001] direction. This spin current has conductivity 𝜎gh2  
which depends of the orientation of the Néel vector, according 
to Fig. 4(b). The spin current Js enters the ferromagnetic layer 
and exerts spin-Hall torque t  on magnetization M of the 
ferromagnetic layer. When the charge current density is small, 
the spin Hall conductivity is constant corresponding to f = 0. 
When the current density becomes sufficiently large, the Néel 
spin-orbit torque reorients the Néel vector away from its 
equilibrium [010] direction and the spin Hall conductivity 𝜎gh2  
decreases. Since the sizable change of 𝜎gh2  can be obtained even 
with a small tilting of the Néel vector (Fig. 4b), a moderate 
charge current is sufficient to confirm our prediction. This 
variation in the spin Hall conductivity can be detected by various 
standard techniques such as the spin-torque ferromagnetic 
resonance (ST-FMR) [ 42 ], the magneto-optical Kerr effect 
(MOKE) [43], and the second-harmonic Hall effect [44].   

 In a similar way, the Néel vector control of the other 
components of the spin Hall conductivity listed in Table 1 can 
be measured using the appropriate design of the spin-orbit torque 
device. The proposed approach represents a new way to 
electrically control the spin Hall conductivity in-situ. It is 
different from the recent approaches to tune the spin Hall effect 

 

FIG. 3. Néel vector control of the spin Hall effect. (a, b) Calculated spin 
Berry curvature 𝛺gh2  in the 𝑘2 =

3
4
	 plane at E = EF for 𝑛"⃗ ∥ [001] (a) 

and 𝑛"⃗ ∥ [010] (b).  (c) The color maps of 𝛺gh2  in the 𝑘2 =
3
4
	 planes at 

two different energies E = EF and E = EF + 0.2 eV for 𝑛"⃗ ∥ [010]. Solid 
purple line represents the nodal line. (d) Spin Hall conductivity 𝜎gh2  as 
a function of energy for 𝑛"⃗ ∥ [001] (blue line) and 𝑛"⃗ ∥ [010] (red line).  

 

FIG. 4. Angular dependent spin Hall effect and its detection. (a) 
Reorientation of the Néel vector with angle	𝜙 in the (100) plane relative 
to its equilibrium [010] direction. (b) Spin Hall conductivity 𝜎gh2  as a 
function of angle	𝜙. Solid line is guide for eye. (c) Schematic of the 
spin-orbit torque device representing a ferromagnetic layer deposited 
on MnPd2. The Néel vector in MnPd2 is controlled by charge current Jc 
producing the Néel spin-orbit torque. Spin Hall current Js driven by Jc 
generates torque τ on magnetization M of the ferromagnet which 
depends on the Néel vector orientation.  
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by changing the scattering center density [45,46], varying the 
chemical composition [47], or ionic gating [48].   

The predicted strong dependence of the spin Hall 
conductivity on the Néel vector is expected to have non-trivial 
implications for the dynamics of topological textures, such as 
domain walls or skyrmions [49,50]. This dependence can also be 
reflected in the dynamics of AFM domain walls under moderate 
spin-orbit torques [51]. Reversible switching of the Néel vector 
may be realized using ferroelastic strain from a piezoelectric 
substrate [52]. 

Overall, we have demonstrated that MnPd2 is a promising 
material candidate for topological antiferromagnetic spintronics. 
On one hand, this material has the required magnetic group 
symmetry to support the Néel spin-orbit torque, which allows the 
reorientation of the Néel vector. On the other hand, MnPd2 holds 
a dispersive Dirac nodal line across the Fermi energy. Gap 
opening and closing along the Dirac nodal line is controlled by 
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