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A d-dimensional second-order topological insulator (SOTI) can host topologically protected (d−2)-
dimensional gapless boundary modes. Here we show that a 2D non-Hermitian SOTI can host
zero-energy modes at its corners. In contrast to the Hermitian case, these zero-energy modes can
be localized only at one corner. A 3D non-Hermitian SOTI is shown to support second-order
boundary modes, which are localized not along hinges but anomalously at a corner. The usual bulk-
corner (hinge) correspondence in the second-order 2D (3D) non-Hermitian system breaks down.
The winding number (Chern number) based on complex wavevectors is used to characterize the
second-order topological phases in 2D (3D). A possible experimental situation with ultracold atoms
is also discussed. Our work lays the cornerstone for exploring higher-order topological phenomena
in non-Hermitian systems.

Introduction.—Recent years have witnessed a surge
of theoretical and experimental interest in studying
topological phases [1–3] in insulators [4–9], supercon-
ductors [10–12], ultracold atoms [13–18] and classical
waves [19–22]. These topologically nontrivial phases
are characterized by the topological index of gapped
bulk energy bands and exhibit gapless states on their
boundaries. Such gapless boundary states cannot be
gapped out by local perturbations that preserve both
bulk gap and symmetry.

Topological phases have widely been studied in
closed systems, which are described by Hermitian
Hamiltonians featuring real eigenenergies and orthogonal
eigenstates. Recently, there has been a great deal
of effort in exploring topological invariants of open
systems governed by non-Hermitian operators [23, 24].
Non-Hermitian Hamiltonians can find applications in a
wide range of systems including optical and mechanical
structures subjected to gain and loss [25–40], and solid-
state systems with finite quasiparticle lifetimes [41–
45]. In particular, topological phases of non-Hermitian
Hamiltonians have recently been investigated in these
systems [43–70]. The most prominent feature of non-
Hermitian Hamiltonians is the existence of exceptional
points (EPs), where more than one eigenstate coalesces
[24, 71, 72]. This coalescence of eigenstates at EPs makes
the corresponding eigenspace no longer complete, and the
non-Hermitian Hamiltonian becomes non-diagonalizable.
These unique features of EPs can lead to rich topological
features in non-Hermitian topological systems with no
counterpart in Hermitian cases such as Weyl exceptional
rings [51], bulk Fermi arcs, and half-integer topological
charges [57]. Furthermore, the interplay between non-
Hermiticity and topology can lead to the breakdown

of the usual bulk-boundary correspondence [50, 52, 58,
63, 65–67] due to the non-Bloch-wave behavior of open-
boundary eigenstates, where the conventional Bloch
wavefunctions do not precisely describe topological phase
transitions under the open boundary conditions. The
non-Bloch winding (Chern) number defined via complex
wavevectors in 1D (2D) has recently been introduced to
fill this gap [65, 66].

More recently, the concept of topological insulators
(TIs) has been generalized to second-order [73–91] and
third-order [74, 92, 93] TIs in Hermitian systems. In
contrast to conventional first-order TIs, a d-dimensional
second-order topological insulator (SOTI) only hosts
topologically protected (d − 2)-dimensional gapless
boundary states. For example, a 2D SOTI has zero-
energy states localized at its corners, and a 3D SOTI
hosts 1D gapless modes along its hinges. Therefore,
the conventional bulk-boundary correspondence is no
longer applicable to SOTIs. Up to now, studies of
the second-order and third-order topological phases have
been restricted to Hermitian systems. We now ask: is it
possible for a non-Hermitian system to exhibit second-
order topological phases? If yes, how can we define a
topological invariant to characterize them?

In this Letter, we investigate 2D and 3D SOTIs
described by non-Hermitian Hamiltonians. Even though
the bulk bands are first-order topologically trivial
insulators, there are degenerate second-order bound
states. In contrast to the Hermitian case, these zero-
energy states in 2D are localized only at one corner
protected by mirror-rotation symmetry and sublattice
symmetry. Moreover, the second-order boundary modes
in 3D are localized not along the hinges but anomalously
at a corner. The winding number (Chern number)
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characterizes its second-order topological phase in 2D
(3D), where the non-Bloch-wave behavior of open-
boundary eigenstates is included due to the breakdown
of the usual bulk-corner (hinge) correspondence in
second-order non-Hermitian systems. The proposed
non-Hermitian model can experimentally be realized in
ultracold atoms.

2D SOTI.—We consider a 2D non-Hermitian Hamil-
tonian H2D that respects both two-fold mirror-rotation
symmetry Mxy and sublattice symmetry S

MxyH2D (kx, ky)M−1xy = H2D (ky, kx) , (1)

SH (kx, ky)S−1 = −H (kx, ky) , (2)

and [S, Mxy] = 0. Note that the Hermitian counterpart
with the same symmetries was investigated in Ref. [81].
Due to the mirror-rotation symmetry in Eq. (1), we can
express the Hamiltonian H2D on the high-symmetry line
kx = ky as

U−1H2D (k, k)U =

(
H+ (k) 0

0 H− (k)

)
, (3)

where U is a unitary operator, and H±(k) acts on
the mirror-rotation subspace. Since H± (k) respects
sublattice symmetry S ′ defined in each mirror-rotation
subspace [note that S in Eq. (2) is defined in the entire
lattice space], we can define the winding number as
follows:

w± :=

∮
BZ

dk

4πi
Tr

[
S ′H−1± (k)

dH± (k)

dk

]
. (4)

The topological index that characterizes the second-order
topological phases in 2D is given by

w := w+ − w−. (5)

We investigate a concrete model of a 2D SOTI on
a square lattice, where each unit cell contains four
orbitals and asymmetric particle hopping within each
unit cell is introduced, as shown in Fig. 1(a). The Bloch
Hamiltonian is written as

H2D = [t+ λ cos(kx)] τx − [λ sin(kx) + iγ] τyσz

+ [t+ λ cos(ky)] τyσy + [λ sin(ky) + iγ] τyσx,
(6)

where we have set the lattice constant a0 = 1, λ is a
real-valued inter-cell hopping amplitude, t ± γ denote
real-valued asymmetric intra-cell hopping amplitudes,
and σi and τi (i = x, y, z) are Pauli matrices for
the degrees of freedom within a unit cell. The
Hamiltonian H2D can be implemented experimentally
using ultracold atoms in optical lattices with engineered
dissipation [see Fig. 1(b) and Sec. VIII in the

t +
γ

λ

λ

3 1

42

t -
γ

t - γ

t+γ

(a) (b)

FIG. 1. Non-Hermitian SOTI in 2D. (a) Tight-binding
representation of the model [Eq. (6)] on a square lattice.
Each unit cell contains four orbitals (blue solid circles). The
orange lines denote inter-cell coupling, and the red and black
lines with arrows represent asymmetric intra-cell hopping.
The dashed lines indicate hopping terms with a negative
sign, accounting for a flux of π piercing each plaquette. (b)
Schematic illustration of a proposed experimental setup using
ultracold atoms [94]. The primary lattice together with a
pair of Raman lasers gives rise to a Hermitian SOTI, where
the Raman lasers are used for inducing effective particle
hopping. The asymmetric hopping amplitudes are introduced
via coherent coupling to a dissipative auxiliary lattice.
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FIG. 2. Complex energy spectra of the non-Hermitian SOTI
described by Eq. (6) with open boundaries along the x
direction and periodic boundaries along the y direction. The
edge states (red curves) are gapped for (a,b) t = 0.6. No edge
states exist for (c,d) t = 2.0. An EP exists for t = λ+γ = 1.9,
where a phase transition occurs. The number of unit cells
along the x direction is N = 20 with λ = 1.5 and γ = 0.4.

supplemental material [94] for details]. The Hermitian
part of H2D(k) preserves mirror and four-fold rotational
symmetries with Mx = τxσz, My = τxσx, and
C4 = [(τx − iτy)σ0 − (τx + iτy)(iσy)] /2. While they
are broken by asymmetric hopping, H2D stays invariant
under sublattice symmetry S = τz and mirror-rotation
symmetry Mxy = C4My, and [S, Mxy] = 0.
Bulk and edge states.—The upper and lower bands

E±(k) of H(k) are two-fold degenerate [94], and these
bands coalesce at EPs with E±(kEP) = 0 for t = ±λ ± γ

or ±
√
γ2 − λ2. Figure 2 shows the complex energy

spectra with open and periodic boundaries along the x
and y directions, respectively. The non-Hermitian system
supports gapped complex edge states for |t| < |γ| + |λ|,
as shown in the red curves in Figs. 2(a) and (b). On
the other hand, for |t| > |γ| + |λ|, there are no edge
states [see Figs. 2(c) and (d)]. In spite of their existence,
edge states can continuously be absorbed into bulk bands
and therefore are not topologically protected. In fact,
the bulk bands are topologically trivial, characterized by
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FIG. 3. Corner states in the non-Hermitian SOTI described
by the Hamiltonian (6). (a) Probability density distributions∑4

i=1 |φR,i,n|2 (n is the index of an eigenstate and R specifies
a unit cell) of four zero-energy states under the open boundary
condition along the x and y directions. The zero-energy
modes are localized only at the lower-left corner. (b,c) Real
and imaginary parts of complex eigenenergies around zero
energy. The red dots represent eigenenergies of the corner
modes. The imaginary parts of the bulk eigenenergies of a
finite-size sample vanish over a wide range of parameters. (d)
Probability density distribution of a typical bulk state under
the open boundary condition along the x and y directions.
The bulk state is exponentially localized at the lower-left
corner. The number of unit cells is 20 × 20 with t = 0.6,
λ = 1.5 and γ = 0.4.

zero Chern number (see Sec. I in Ref. [94]) over the entire
range of parameters.

Corner states.—While the bulk bands of H(k) are
topologically trivial, the system with open-boundary
conditions in the x and y directions hosts four zero-
energy modes at its corners, as shown in Figs. 3(a-c).
Moreover, these zero-energy states are localized only at
the lower-left corner [see Fig. 3(a)]. Note that the mid-
gap modes can be localized at the upper-right corner if
the sign of hopping amplitude t is reversed (see Fig. S1
in Ref. [94]). This mid-gap-state localization at one
corner results from the interplay between the symmetry
Mxy and non-Hermiticity, where each corner mode is a
simultaneously topological state of two intersecting non-
trivial edges (see Sec. III in Ref. [94]). Furthermore, these
corner modes are topologically protected against disorder
preservingMxy symmetry and sublattice symmetry (see
Sec. IV in Ref. [94]). Note that when the mirror-rotation
symmetry is broken, the mid-gap modes can be localized
at more than one corner, and the sites at which mode
localization occurs can be diagnosed by considering the
type of asymmetric hopping and non-Hermiticity in non-
Hermitian SOTIs (see Sec. V in Ref. [94]).

Moreover, the bulk bands of the open-boundary system
are considerably different from those of the periodic
system. As shown in Figs. 3(b) and (c), the bulk
eigenenergies in the case of open boundaries are entirely
real over a wide range of system parameters as a
consequence of pseudo-Hermiticity of the open-boundary
system [94], while they are complex in the case of the
periodic boundaries. Furthermore, we find that, in
contrast to the Hermitian SOTI, the bulk modes are
exponentially localized at the lower-left corner due to the
non-Hermiticity caused by the asymmetric hopping (see

Sec. VI and VII in Ref. [94]), as shown in Fig. 3(d).
Topological index.—The topology of the non-Hermitian

Hamiltonian H2D is characterized by the winding number
w [see Eqs.(1-5)]. One of the boundaries of the
topological-phase transition calculated by this index is
t = λ+γ = 1.9 (i.e., one of the EPs) using the parameters
in Fig. 2. However, numerical calculations for the open-
boundary system show that corner states exist only for
t <

√
λ2 + γ2 ' 1.55. Therefore, this topological index

cannot correctly determine the phase boundary between
topologically trivial and nontrivial regimes, indicating
the breakdown of the usual bulk-corner correspondence
in non-Hermitian systems. This breakdown results
from the non-Bloch-wave behavior of open-boundary
eigenstates of a non-Hermitian Hamiltonian, as studied
in first-order topological insulators in Refs. [65, 66].
To figure out this unexpected non-Bloch-wave behavior,
complex wavevectors, instead of real ones, are suggested
for defining the topological index of non-Hermitian
systems [65, 66]. Here we generalize this idea to the non-
Hermitian SOTI (see Sec. VII in Ref. [94] for details).
After replacing real wavevectors k with complex ones

k = (kx, ky)→ k̃ = (kx − iln(β0), ky − iln(β0)), (7)

with β0 =
√
|(t− γ)/(t+ γ)|, the Hamiltonian H± for

H2D in Eq. (3) has the following forms

H̃±√
2

=
(
t− γ + λβ0eik

)
σ∓ +

(
t+ γ +

λ

β0
e−ik

)
σ±,

(8)

where σ± = (σx ± iσy)/2. Note that the location of
the mid-gap corner modes depends on β0: they are
localized at the lower-left corners for β0 < 1, and at
the upper-right corners for β0 > 1. Figure 4(a) shows
the topological phase diagram. The number of zero-
energy corner modes is counted as 2|w|. Furthermore,
the phase boundaries are determined by t2 = λ2 + γ2

and t2 = γ2 − λ2, and the phase diagram contains the
trivial phase (w = 0) and the second-order topological
phase (w = −2).
3D SOTI.—We now consider a 3D non-Hermitian

Hamiltonian H3D that respects two-fold mirror-rotation
symmetry

MxyH3D (kx, ky, kz)M−1xy = H3D (ky, kx, kz) . (9)

Note that the Hermitian counterpart was investigated in
Ref. [82]. As in the 2D case, due to the mirror-rotation
symmetry in Eq. (9), we can express the Hamiltonian
H3D along the high-symmetry line kx = ky as

U−1H3D (k, k, kz)U =

(
H+ (k, kz) 0

0 H− (k, kz)

)
, (10)

where H±(k, kz) acts on the corresponding mirror-
rotation subspace. We can define the Chern number

C± :=
1

2π

∫
BZ

Tr [dA± + iA± ∧A±] , (11)
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FIG. 4. Topological phase diagram in the 2D non-Hermitian
SOTI for γ = 0.4. The gray regions represent the
topologically trivial phase with w = 0, while the cyan
regions represent the second-order topological phase with
w = −2 that hosts corner states. The phase boundaries are
determined by t2 = λ2 + γ2 and t2 = γ2 − λ2.

where Aαβ± = i
〈
χα±(k, kz)

∣∣ ∣∣∣dφβ±(k, kz)
〉

with α and β

taken over the filled bands, and
∣∣φα±〉 (

∣∣χα±〉) is a right
(left) eigenstate of H±(k, kz). This formula is a natural
generalization of the single-band non-Hermitian Chern
number discussed in Ref. [53] to multiple bands. Then
the topological index that characterizes the second-order
topological phases in 3D is

C := C+ − C−. (12)

We investigate a concrete model of a 3D non-Hermitian
SOTI on a cubic lattice described by

H3D =

(
m+ t

∑
i

cos ki

)
τz +

∑
i

(∆1 sin ki + iγi)σiτx

+ ∆2 (cos kx − cos ky) τy, (13)

where i runs over x, y and z, and γx = γy = γ0.
This Hamiltonian H3D only preserves mirror-rotation
symmetry Mxy (see Sec. IX in Ref. [94]).

When the bulk bands of H3D are gapped and first-
order-topologically trivial, it does not support gapless
surface states, as shown by energy spectra with open
boundaries along the y direction in Figs. 5(a) and (b).
However, the system with open boundaries in both x
and y directions hosts four-fold degenerate second-order
boundary modes, as shown in Figs. 5(c) and (d). In
contrast to the Hermitian case [82], these second-order
boundary modes under the open boundary condition
along all the directions are localized not along the hinge
but anomalously localized at one corner [see Fig. 5(e)].
This indicates that the usual bulk-hinge correspondence
is broken for the 3D non-Hermitian SOTI. Moreover,
these second-order boundary modes are only localized at
the corners on the x = y plane due to the mirror-rotation
symmetry Mxy (see Fig. S10 in Ref. [94]). In addition,
the second-order boundary modes can be localized at
more than one corner when the mirror-rotation symmetry
is broken or there exists the balanced gain and loss (see
Sec. IX in Ref. [94]).

0 kz-
-5

0

5

R
e(

E)

-0.7

0

0.7

Im
(E

)

0 kz-
kzkx

R
e(

E)
Im

(E
)

kzkx
(b)

(a) (e)

0.4

0.2

0
t

γ

0.1 1.1 2

(f)(d)

(c)

0

1

= C 0 = C -2

0

0.05

0.10

0.15

z

30

15

1

z

x y10
20

20
10

1x y

FIG. 5. Three-dimensional non-Hermitian SOTI described
by Eq. (13). (a,b) Complex energy spectrum under the
open boundary condition along the y direction. (c,d)
Complex energy spectrum under the open boundary condition
along the x and y directions. Red curves denote four-fold
degenerate second-order boundary modes. (e) Probability
density distribution |Φn,R|2 (n is the index of an eigenstate
and R specifies a lattice site) of mid-gap modes with open
boundaries along the x, y and z directions. The mid-gap
states (with eigenergies of 0.035) are localized only at one
corner. The number of unit cells is 20 × 20 × 30 with t = 1,
γ0 = 0.7, γz = −0.2, m = −2, ∆1 = 1.2, and ∆2 = 1.2. (f)
Second-order topological phase diagram characterized by the
nonzero Chern number.

Due to mirror-rotation symmetry, the second-order
topological phase in 3D can be characterized by the
Chern number C [see Eqs. (9-12)]. To generalize the
bulk-boundary correspondence in 3D non-Hermitian SO-
TIs, we take into account the exponential-decay behavior
of non-Hermitian eigenstates with open boundaries along
all the directions. After considering a low-energy
continuum model of the Hamiltonian H3D to capture
the essential physics of the 3D non-Hermitian SOTI with
analytical results, and replacing real wavevectors k with
complex ones (see Sec. IX in Ref. [94] for details), the
Hamiltonian H± for H3D in Eq. (10) can be expressed as

H̄±(k, kz) =−
[
m+ 3t− t(k − iα0)2 − t

2
(kz − iαz)2

]
σz

±
√

2 [∆1(k − iα0) + iγ0]σy

−∆1 (kz − iαz)σx, (14)

where

α0 =
γ0
∆1

, and αz =
γz
∆1

. (15)

Figure 5(f) shows the topological phase diagram, where
the second-order topological phases are characterized by
the nonzero Chern number (C = −2). The number of
hinge states is counted as 2|C|.
Conclusions.—In this Letter, we have analyzed 2D and

3D SOTIs in the presence of non-Hermiticity. In spite of
their first-order topologically trivial bulk bands, second-
order boundary modes exist in both 2D and 3D SOTIs.
In contrast to the Hermitian cases, the mid-gap states in
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2D are localized only at one corner protected by mirror-
rotation symmetry and sublattice symmetry, and the
second-order boundary modes are anomalously localized
at a corner in 3D. The winding number (Chern number)
defined by complex wavevectors is used to determine
their second-order topological phases in 2D (3D). An
experimental realization with ultracold atoms is also
discussed. Our study provides a framework to explore
richer non-Hermitian physics in higher-order topological
phases.
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order topological phases.

∗ tao.liu@riken.jp
† gong@cat.phys.s.u-tokyo.ac.jp
‡ kawabata@cat.phys.s.u-tokyo.ac.jp
§ ueda@phys.s.u-tokyo.ac.jp
¶ fnori@riken.jp

[1] M. Z. Hasan and C. L. Kane, “Colloquium: Topological
insulators,” Rev. Mod. Phys. 82, 3045 (2010).

[2] X. L. Qi and S. C. Zhang, “Topological insulators and
superconductors,” Rev. Mod. Phys. 83, 1057 (2011).

[3] C. K. Chiu, J. C. Y. Teo, A. P. Schnyder, and
S. Ryu, “Classification of topological quantum matter
with symmetries,” Rev. Mod. Phys. 88, 035005 (2016).

[4] F. D. M. Haldane, “Model for a quantum Hall effect
without Landau levels: Condensed-matter realization
of the ”parity anomaly”,” Phys. Rev. Lett. 61, 2015
(1988).

[5] C. L. Kane and E. J. Mele, “Z2 topological order and the
quantum spin Hall effect,” Phys. Rev. Lett. 95, 146802
(2005).

[6] B. A. Bernevig, T. L. Hughes, and S. C. Zhang,
“Quantum spin Hall effect and topological phase
transition in HgTe quantum wells,” Science 314, 1757
(2006).

[7] M. König, S. Wiedmann, C. Brüne, A. Roth,
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