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Invasiveness of quantum measurements is a genuinely quantum mechanical feature that is not
necessarily detrimental: Here we show how quantum measurements can be used to fuel a cooling
engine. We illustrate quantum measurement cooling (QMeC) by means of a prototypical two-stroke
two-qubit engine which interacts with a measurement apparatus and two heat reservoirs at different
temperatures. We show that feedback control is not necessary for operation while entanglement
must be present in the measurement projectors. We quantify the probability that QMeC occurs
when the measurement basis is chosen randomly, and find that it can be very large as compared to
the probability of extracting energy (heat engine operation), while remaining always smaller than
the most useless operation, namely dumping heat in both baths. These results show that QMeC
can be very robust to experimental noise. A possible low-temperature solid-state implementation
that integrates circuit QED technology with circuit QTD (quantum thermodynamics) technology is
presented.

Introduction.– The second law of thermodynamics dic-
tates that heat naturally flows from hot bodies to cold
ones [1]. There are two standard ways to intervene and
reverse the natural flow of heat (see Fig. 1): a) use work
supplied by an external time-dependent driving force f(t)
thus realising a standard refrigeration machine, see e.g.,
[2, 3]; b) implement a Maxwell demon that steers the heat
by means of a feedback control loop, consisting in acqui-
sition of information about the state |n〉 of the working
substance by means of non-invasive measurement, fol-
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FIG. 1: Various ways to pump a heat current from a cold to a
hot reservoir. a) In standard refrigeration the heat current is
powered by energy injected by a time dependent driving force
f(t). b) In Maxwell demon refrigeration heat current is gener-
ated by a feedback loop where various driving forces fn(t) are
applied depending on the outcome, n, of non-invasive mea-
surements on the working substance, without energy injec-
tion. c) In quantum measurement cooling, put forward here,
the heat current is powered by energy provided via invasive
measurements on an appropriate measurement basis {|ψk〉},
without performing feedback control. Filled arrows represent
flow of energy.

lowed by the timely application of various driving forces
fn(t), depending on the measurement outcome, that do
not do work on the system [4–6]. By non-invasive mea-
surement here we mean that the measurement basis co-
incides with the basis in which the state of the measured
system is diagonal (in the present work that is the energy
eigenbasis). Here we will demonstrate yet another mech-
anism that is genuinely quantum mechanical, namely c)
to use invasive quantum measurements as a resource, in
fact a fuel, that powers refrigeration, without any feed-
back control. We shall call this mechanism “quantum
measurement cooling” QMeC. QMeC is performed by a
demon who needs not be intelligent. It rather needs to be
knowledgeable, that is it has to know which measurement
basis {|ψk〉} to employ in order that QMeC occurs.

While the idea of using measurement apparata to fuel
engines is currently emerging as a new paradigm in quan-
tum thermodynamics [7–10], attention has never been
posed before on whether it can be used for cooling, nor
on the fact that, as we elucidate below, feedback control
is not necessary for exploiting the quantum-measurement
fuel. We address these questions by means of a thorough
investigation of a prototypical two-qubit engine [2, 3, 5].
Our results shed new light on many facets of the second
law of thermodynamics. For example, it emerges that in
order for the device to work the measurement basis must
contain entangled projectors, while maximal efficiency is
achieved when the post measurement statistical mixture
ρ′ (see Eq. (4) below) is un-entangled. We also find
that, when the measurement basis is chosen randomly,
the least useful operation – i.e., dumping heat in both
baths– is the most likely outcome (hence easier to realise
in practice), which conforms to intuition. Also, while
energy extraction is typically very unlikely, refrigeration
can be very likely. This says that our demon needs not
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be very knowledgeable in order to realise QMeC, or in
more concrete terms, QMeC can be very robust to ex-
perimental noise, that is, it is practically feasible. In the
following we shall comment on a possible experimental
realisation.

The model.– Our model is a two-qubit engine [2, 3, 5,
11–13] see Fig. (2). Let

Hi =
~ωi
2
σiz (1)

denote the Hamiltonian of qubit i expressed in terms of
its Pauli matrix σiz and its resonance frequency ωi. Let

H = H1 +H2 =
∑
n

EnΠn (2)

be the total Hamiltonian, En its eigenvalues with corre-
sponding eigenprojectors Πn = |n〉〈n| and eigenvectors
|n〉.

The two qubits are prepared each by thermal contact
with a thermal bath at positive inverse temperatures β1
and β2 respectively, so that the initial state reads

ρ =
e−β1H1

Z1
⊗ e−β2H2

Z2
, (3)

where Zi = Tr e−βiHi is the canonical partition function.
Without loss of generality we shall set 0 < β1 < β2 in
what follows (bath 1 hotter than bath 2).

The quantum measurement cooling cycle is illustrated
in Fig. (2). In the first stroke the two-qubit system in-
teracts with a measurement apparatus, whose effect is to
erase all coherences of the two qubit compound state in
the measurement basis {|ψk〉}. In the following we shall
focus for simplicity on the case of projective measure-
ments onto 1-dimensional sub-spaces, pointing out on a
case by case basis those results that have broader valid-
ity. Denoting the projectors onto the measurement basis
as πk = |ψk〉〈ψk| the post-measurement state ρ′ reads

ρ′ = Φ[ρ] =
∑
k

πkρπk . (4)

Let 〈∆Ei〉 = TrHi(Φ[ρ]−ρ) denote the change in the ex-
pectation value of energy of qubit i. Due to the property
of Φ of being a unital map [namely Φ[1] = 1], it follows
that [5]

β1〈∆E1〉+ β2〈∆E2〉 ≥ 0 , (5)

which expresses the second law of thermodynamics.
In the second stroke each qubit is put back in contact

with its thermal bath, which restores it to its initial Gibbs
state and closes the cycle. Note that in the thermalisation
stroke, on average, each qubit releases the energy 〈∆Ei〉,
gained during the first stroke, to its respective bath. The
〈∆Ei〉’s represent therefore the heat exchanged with the
two baths.

First 
Stroke

Second 
Stroke

[A]

[E][R]

[H]

FIG. 2: Left Panel: Two-stroke two-qubit quantum measure-
ment cooling. During the first stroke (top) the two qubits
interact with the measurement apparatus, as a consequence
qubit 1 receives energy (〈∆E1〉 ≥ 0), while qubit 2 looses en-
ergy (〈∆E2〉 ≤ 0) with an overall positive energy injection
(〈∆E1〉 + 〈∆E2〉 = 〈∆E〉 ≥ 0). During the second stroke
qubit 1 releases energy to the hot bath while qubit 2 with-
draws energy from the cold bath. Right panel: the four possi-
ble operations allowed by the second law of thermodynamics,
Eq. (5), and energy conservation.

The sum 〈∆E〉 = 〈∆E1〉+ 〈∆E2〉 (sometimes referred
to as “quantum heat” [14]) representing the energy given
by the measurement apparatus is generally different from
zero. Looking at the signs of the three energy exchanges
〈∆E〉, 〈∆E1〉, 〈∆E2〉, out of the 8 possible combinations
only 4 are allowed by Eq. (5), the condition 〈∆E〉 =
〈∆E1〉+ 〈∆E2〉, and the condition 0 < β1 < β2:

[R]: 〈∆E1〉 ≥ 0 〈∆E2〉 ≤ 0 〈∆E〉 ≥ 0
[E]: 〈∆E1〉 ≤ 0 〈∆E2〉 ≥ 0 〈∆E〉 ≤ 0
[A]: 〈∆E1〉 ≤ 0 〈∆E2〉 ≥ 0 〈∆E〉 ≥ 0
[H]: 〈∆E1〉 ≥ 0 〈∆E2〉 ≥ 0 〈∆E〉 ≥ 0 .

(6)

They correspond to (see Fig. 2) [R] Refrigerator: heat
flows from the cold bath to hot bath, with energy injec-
tion from the measurement apparatus; [E] energy Extrac-
tion (heat engine): part of the energy naturally flowing
from the hot bath to the cold bath is derouted towards
the measurement apparatus); [A] thermal Accelerator:
the measurement apparatus provides energy to facilitate
the natural flow from the hot bath to the cold bath; [H]
Heater: both baths receive energy from the measurement
apparatus. Which of the 4 possibilities is realised de-
pends on the measurement basis {|ψk〉}. The above ar-
gument holds as well for higher rank projectors.
Results.– Our first main result is that depending on

the problem parameters, some among the four possi-
bilities, [R], [E], [A], [H], are excluded. In particular,
for 0 ≤ ω2/ω1 ≤ β1/β2 only [R] and [H] are allowed.
For β1/β2 ≤ ω2/ω1 ≤ 1 only [E], [A], and [H] are al-
lowed. For ω2/ω1 ≥ 1 only [A] and [H] are allowed.
Note that the most useless operation, [H], may occur
in the full parameter range. For simplicity we shall
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call the range 0 ≤ ω2/ω1 ≤ β1/β2 the [R]-range, the
range β1/β2 ≤ ω2/ω1 ≤ 1 the [E]-range, and the range
ω2/ω1 ≥ 1 the [A] range. In the Supplemental Mate-
rial [15] we provide a proof and discuss how this result is
related to the concept of ergotropy [21].

Our second main result is that, in the [E]-range, among
all possible choices of measurement basis {|ψk〉}, the
singlet-triplet basis{

|ψ∗1〉 = | ↑↑〉; |ψ∗2〉 = |↑↓〉+|↓↑〉√
2

|ψ∗3〉 = |↑↓〉−|↓↑〉√
2

; |ψ∗4〉 = | ↓↓〉 (7)

maximises the energy extraction. This choice maximises
as well the heat engine efficiency η[E] = 〈∆E〉/〈∆E1〉.
Similarly, in the [R]-range, the same choice of basis max-
imises the energy withdrawn from the cold bath −〈∆E2〉
and the refrigeration efficiency η[R] = −〈∆E2〉/〈∆E〉.
These results also show that the set of measurement-
bases realising the [E] and [R] operations are not empty,
that is energy extraction and quantum measurement
cooling are possible. The proof is presented in [15].

As shown in [15] when a two-qudit working sub-
stance is considered the generic form of the optimal
basis is such that it contains only factorised states of
the type |a, a〉 and pairs of entangled states of the type
(|a, b〉 ± |c, d〉)/

√
2.

When the measurement basis is {|ψ∗k〉}, the expression
for the 〈∆Ei〉’s is

〈∆E1,2〉 =
±ω1,2

2

(
1

1 + eβ1ω1
− 1

1 + eβ2ω2

)
, (8)

that is half the value obtained when implementing stan-
dard refrigeration on the two-qubit engine by means of
a full SWAP driving gate [2], which maximises stan-
dard refrigeration (or energy extraction, depending on
the range) over all possible unitary gates [13],[15]. We
note that the same energy exchanges in Eq. (8), hence
maximal efficiency, can be obtained as well with higher
rank projectors, e.g., with q1 = |ψ∗1〉〈ψ∗1 | + |ψ∗2〉〈ψ∗2 |,
q2 = |ψ∗3〉〈ψ∗3 | + |ψ∗4〉〈ψ∗4 |, or with q1 = |ψ∗2〉〈ψ∗2 |, q2 =
|ψ∗1〉〈ψ∗1 |+ |ψ∗3〉〈ψ∗3 |+ |ψ∗4〉〈ψ∗4 |.

In the general case of a working substance composed
of two-qudits, in order for any operation other than [H]
to occur some of the measurement projectors must be en-
tangled, regardless of their rank [37]. However, this does
not necessarily mean that the post-measurement state ρ′,
which is a mixture of them, is an entangled one. Quite
remarkably, it can rather be proved on general grounds
[15] that thermodynamic efficiency is extremal at points
where the post measurement state ρ′ is diagonal in the
{|n〉} basis, that is it has no entanglement. One can check
that the ρ′ resulting from the choice {|ψ∗k〉} above is in
fact diagonal in the {|n〉} basis.

Thirdly we have found the following. Imagine to pick
the measurement basis {|ψk〉} randomly. Then, on aver-
age, the changes in the energy expectation value 〈∆Ei〉

0 0.5 1 1.5

0

0.05

0.1

ω2/ω1

P[E] × 1010 @β1/β2 = 2/3
P[E] × 104 @β1/β2 = 1/6

0 0.5 1 1.5

0

0.2

0.4

ω2/ω1

P[R] @β1/β2 = 2/3
P[R] @β1/β2 = 1/6

0 0.5 1 1.5

0

0.05

0.1

ω2/ω1

P[A] × 102 @β1/β2 = 2/3
P[A] @β1/β2 = 1/6

0 0.5 1 1.5

0.4

0.6

0.8

1

ω2/ω1

P[H] @β1/β2 = 2/3
P[H] @β1/β2 = 1/6

FIG. 3: Probability Px of the various operations x =
[A], [H], [E], [R] as function of level spacing ration ω2/ω1, at
two fixed value of temperature ratios β1/β2.

is non-negative, for both i = 1, 2:

〈∆Ei〉 ≥ 0 , (9)

where the overline denotes the average over the invariant
measure of SU(4) (or more generally SU(N) when con-
sidering a larger working substance): picking a random
basis {|ψk〉} is equivalent to picking a random unitary U :
|ψk〉 = U |k〉. That is, if choosing a random measurement
basis, on average, the less useful operation, i.e. [H], is
realised, independently of the choice of parameters. This
means that, without any knowledge on what to do, one
can only heat up everything [38]. This is in fact a gen-
eral result that sheds light on an interesting facet of the
second law. The general proof is presented in [15].

It follows that in order to realise QMeC, one needs to
know which measurement basis to use. This then opens
the question of what is the probability Px that operation
x (with x = [R], [E], [A], [H]) is realised when picking
a basis-change unitary U randomly from the invariant
SU(4) measure. Said probability Px is given by the ratio
Mx/M of the volume Mx of the subset of SU(4) that
corresponds to [x]-operation rescaled by the total volume
M of the group. Volumes are calculated with respect to
the invariant (Haar) measure of the group. To quan-
tify it we have employed the parametrization of SU(4) in
terms of generalised Euler angles α = (α1, α2, . . . , α15)
[22] and have performed a uniform Monte Carlo sampling
of the Euler angles. We remark that such sampling is
not uniform with respect to the group invariant measure
dΩ(α) =M(α)dα: To achieve uniformity over said mea-
sure each point α in the sample has to be weighted with
the according factor M(α). The results are reported in
Fig. (3).

We firstly note that the Monte Carlo sampling confirms
the results reported above, regarding the range of param-
eters associated to each operation. We also note that [H]
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is always the most likely operation, regardless of the pa-
rameter range. The most surprising observation is that,
while the probability P[E] of [E]-operation, is extremely
low, the probability of [R]-operation can be very large.
In fact it tends to 1/2 from below as ω2/ω1 → 0. This
highlights an asymmetry between the [R] and [E] oper-
ations [39] having an important consequence: it shows
that QMeC can be made more an more robust to noise
by decreasing the ratio ω2/ω1. This is confirmed by our
numerical study showing that the region of SU(4) for
which QMeC is realised not only grows with decreasing
ω2/ω1 but also remains connected [15]. Thus experimen-
tal noise on the measurement basis is not an issue with
respect to implementations. In contrast, the practical
feasibility of the [E]-operation is greatly hindered by the
fact that P[E] is extremely small, hence it is extremely
sensitive to experimental noise.

Considerations about the experimental realisation.–
Quantum measurement cooling can be practically re-
alised with solid-state superconducting circuitry by a
suitable integration of circuit QED tools [23] and cir-
cuit Quantum Thermodynamics (circuit QTD) tools [24].
A possible design comprises two superconducting qubits
coupled to an on-chip microwave line resonator [25]. Us-
ing the expression πk = UΠkU

† in Eq. (4) to ob-
tain Φ[ρ] =

∑
UΠkU

†ρUΠkU
†, we see that the first

stroke (measurement) dynamics can be implemented by
the combination of two-state manipulation and standard
measurement on the {|n〉} basis, as customarily done for
two-qubit tomography [25]. That is: first the gate U† is
applied, e.g. by driving two-photon side-band transitions
[26]; Then, quantum-non-demolition measurement is ap-
plied in the {|n〉} basis by driving the cavity at the appro-
priate frequency [25]; Finally the gate U is applied, e.g.,
by driving two-photon side-band transitions [26]. The
qubit level spacings can be manipulated by means of lo-
cal magnetic fields, and cross-resonance techniques can
be used to entangle them when far detuned [27, 28]. The
output of the measurement can be inferred by reading the
quadratures of the field transmitted through the resonant
cavity [25]. The second stroke can be realised by induc-
tively coupling each qubit to an on-chip resistor kept at
inverse temperature βi [5, 29, 30]. Heat exchanged with
the resistors could be calorimetrically measured by means
of fast on-chip thermometry of the resistors electron gas
temperature [31, 32]

Conclusions.– We have presented a genuinely quan-
tum mechanical cooling concept, whereby the fuel is the
energy exchanged with a measurement apparatus per-
forming invasive quantum measurements. No feedback
control is necessary. We found a number of results valid
in the case of a generic two-qudit working substance: a)
in order for the engine to do anything useful the mea-
surement basis must contain entangled projectors, while,
quite paradoxically, best performance is achieved when
the post measurement mixture ρ′ is non-entangled; b)

lack of knowledge of how to operate the engine leads on
average to heating up everything. Quite surprisingly in
the special case of two-qubits, we have found that when
choosing the measurement basis randomly, QMeC can
be rather likely to occur (in contrast to energy extrac-
tion), which makes its implementation robust to exper-
imental noise. While being aware that the issue of the
energetic cost of ideal projective measurement is still an
actively debated fundamental problem in measurement
theory [33–36], two-qubit QMeC can be practically re-
alised with superconducting circuitry by combination of
circuit QED and circuit QTD (quantum thermodynam-
ics) elements and methods.
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J. M. Fink, M. Göppl, L. Steffen, and A. Wallraff, Phys.
Rev. B 79, 180511 (2009).

[27] G. S. Paraoanu, Phys. Rev. B 74, 140504 (2006).
[28] C. Rigetti and M. Devoret, Phys. Rev. B 81, 134507

(2010).
[29] A. O. Niskanen, Y. Nakamura, and J. P. Pekola, Phys.

Rev. B 76, 174523 (2007).
[30] B. Karimi, J. P. Pekola, M. Campisi, and R. Fazio, Quan-

tum Sci. Technol. 2, 044007 (2017).
[31] S. Gasparinetti, K. Viisanen, O.-P. Saira, T. Faivre,

M. Arzeo, M. Meschke, and J. P. Pekola, Phys. Rev. Ap-
plied 3, 014007 (2015).

[32] L. B. Wang, O.-P. Saira, and J. P. Pekola, App. Phys.

Lett. 112, 013105 (2018).
[33] Y. Guryanova, N. Friis, and M. Huber, arXiv:1805.11899

(2018).
[34] P. Busch, P. Lahti, J.P. Pellonpää, and K. Ylinen, Quan-
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