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Asymmetric segregation of key proteins at cell division – be it a beneficial or deleterious protein
– is ubiquitous in unicellular organisms and often considered as an evolved trait to increase fitness
in a stressed environment. Here, we provide a general framework to describe the evolutionary origin
of this asymmetric segregation. We compute the population fitness as a function of the protein
segregation asymmetry a, and show that the value of a which optimizes the population growth
manifests a phase transition between symmetric and asymmetric partitioning phases. Surprisingly,
the nature of phase transition is different for the case of beneficial proteins as opposed to deleterious
proteins: a smooth (second order) transition from purely symmetric to asymmetric segregation
is found in the former, while a sharp transition occurs in the latter. Our study elucidates the
optimization problem faced by evolution in the context of protein segregation, and motivates further
investigation of asymmetric protein segregation in biological systems.

Introduction - In stressed environments, microbial cells
such as bacteria or yeast utilize various mechanisms in
order to survive. One important mechanism is the asym-
metric segregation of vital cytosolic components at cell
division: one of the two daughter cells will inherit more
favorable conditions (at the expense of the sister cell) [1–
6]. Experiments on fission yeast have shown that this
asymmetric segregation emerges only in a stressed en-
vironment [7]. These observations led to a conjecture
that cells may have evolved asymmetric segregation of
deleterious damages to increase the overall fitness of the
population since one of the daughter cells would be “reju-
venated” [3, 8–10]. Cytosolic components that are advan-
tageous to cell growth may also be segregated asymmetri-
cally [11, 12]. For instance, recent experiments elucidated
the molecular mechanisms of asymmetric segregation of
the main multidrug efflux pumps in the bacterium Es-

cherichia coli, which enable direct expulsion of harmful
chemicals from the cells [12]. The strong partitioning bias
of efflux pumps for the old cell poles generates growth
rate differences among cells, and it has been argued to
be a strategy for bacteria to survive a high concentration
of antibiotics.

Several previous theoretical works focused on partic-
ular models for how damage affects cellular growth, in
which it was shown that completely asymmetric segre-
gation (one daughter cell inherits all the key protein
from the mother cell) optimizes the population growth
rate [3, 9, 13]. Here, rather than focusing on a partic-
ular model, we will study a rather broad class of mod-
els in which the instantaneous (single-cell) growth rate
is a function of the protein concentration. Notably, we
will find the optimal segregation strategy that maximizes
the population growth rate [14, 15]. In this way, we ob-
tain general insights into the problem and identify the
underlying optimization principles. Also, previous stud-
ies often consider a coarse-grained effect of the damaged
proteins on the cell’s fitness through the generation time

[3, 13] or the survival rate [9], neglecting the exponen-
tial growth of cell volume at the single level [16–19]. A
more realistic model should start from the instantaneous
effects of the key protein cellular concentration on the
single-cell growth rate.

For the completely asymmetric segregation case, we de-
rive an analytical expression for the population growth
rate. For weak asymmetry, we can map the problem to
the Landau theory of phase transitions [20]. We find
that the optimal ratio exhibits a phase transition from a
symmetric phase to a perfectly asymmetric phase as the
environmental stress increases. While the transition is
sharp for the case of deleterious proteins, for the segre-
gation of benefits the transition is of second order. These
theoretical predictions are verified using numerical simu-
lations. We conclude by discussing the relation between
our theory and experimental observations.

FIG. 1. A mother cell attributes the protein asymmetrically
to the daughters, with an asymmetry parameter a. The lin-
eage composed of cells inheriting more proteins than its sister
cell will reach a steady state with a constant number of pro-
teins at cell birth (red arrow). Similarly, the other lineage
composed of cells inheriting less proteins (green arrow) will
reach a steady state.

Model- We assume that the amount of the newly pro-
duced key protein is proportional to the increment of cell
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volume, with an accumulation rate S. Therefore, the
amount of protein at cell volume V is equal to

D(V ) = Db + S(V − Vb), (1)

and here Vb (Db) is the cell volume (amount of protein)
at cell birth. The protein accumulation rate S quan-
tifies the environmental stress: a larger S represents a
more stressed environment for damage segregation, e.g.,
a higher temperature [7] and a less stressed environment
for benefit segregation. In the case of beneficial proteins,
the usual parameter tuned in experiments is the concen-
tration of antibiotics [12]. A higher concentration of an-
tibiotics requires a higher concentration of beneficial pro-
teins, e.g., the efflux pump, to achieve the same growth
rate as a lower concentration of antibiotics. So increas-
ing the environmental stress through antibiotics concen-
tration is equivalent to lowering the beneficial protein
concentrations, which is set by the protein accumulation
rate. In the following, we consider the protein accumula-
tion rate as the control parameter for both damage and
benefit segregation cases, and a larger (smaller) S repre-
sents a more stressed environment for damage (benefit)
segregation.
We assume that the cell divides its volume symmet-

rically and deterministically (Vb = 1, Vd = 2) based
on the fact that the cell volume fluctuation is small
[17, 18, 21, 22]. The amounts of protein that the two
daughter cells inherit are

Db,1 = Dd,m
1− a

2
, Db,2 = Dd,m

1 + a

2
, (2)

where Dd,m is the amount of protein inside the mother
cell at division, and a is a continuous variable, ranging
from 0 to 1 (Fig. 1). a = 1 corresponds to the completely
asymmetric segregation and a = 0 corresponds to the
symmetric segregation.
We assume that the cell volume grows exponentially

at the single cell level [16, 17, 19],

dV

dt
= λ[σ]V, (3)

where λ[σ] is the instantaneous growth rate, depending
on the protein concentration σ = D/V . The growth
rate function depends on the specific system, which can
be measured experimentally and in general exhibits an
inflection point [2, 3]. Here, we consider the growth rate
as a Hill-type function,

λ[σ] =
λ0 + λ1σ

n

1 + σn
. (4)

If λ0 > λ1, λ[σ] is a decreasing function, and thus the
key protein is deleterious. If λ0 < λ1, the protein is
beneficial. We note that an intrinsic concentration scale
Km is implicitly included in Eq. (4) and set as the unit of
concentration. In the following, we set the accumulation

rate of the key protein to be 0 < S < 1 since for all cases
we study the phase transition occurs within this range.
This is consistent with experimental observations within
the framework of our model [2, 3, 7, 12].

In this paper, we focus on the case n = 2, but our
main conclusions are valid for any n > 1 (Supplemen-
tary Information [23] (SI) (c)). First, we briefly discuss
the special case n = 1, where the growth rate function
is purely convex (concave) for the damage (benefit) case.
In this case, we find that the population growth rate is
always maximized at a = 1 (a = 0) for the damage (ben-
efit) case, independent of the environmental stress (see
proofs and numerical tests in SI (b)). This is consistent
with the previous work on related models [3, 9].

In the following, we provide two methods to find the
population growth rate respectively for small a and a =
1, for a general growth rate function with an inflection
point. Interpolating between these two limits will provide
insights into the optimal degree of asymmetry.
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FIG. 2. The population growth rate at a = 0 and a = 1
for the damage (a) and benefit (b) case. The blue solid lines
are theoretical results based on numerical calculation of Eq.
(5), and the red solid lines are λ[S]. The circles are results
from direct simulations of a population with a = 1. S∗ is
the accumulation rate at which Λp(S∗, 0) = Λp(S∗, 1). The

growth rate at the single-cell level is equal to λ[σ] = λ0+λ1σ
2

1+σ2

with λ0 = 1, λ1 = 0 for the damage case and λ0 = 0.2,
λ1 = 1.2 for the benefit case. Note that λ0 > 0 for the benefit
case in order to ensure a well defined population growth rate
also for perfectly asymmetric partitioning. The value of λ0

does not affect our conclusions (see SI (f)). S∗ ≈ 0.558 for
the damage case and S∗ = 0.378 for the benefit case.

Self-similarity method - We consider an exponentially
growing population and imagine taking a snapshot of the
population at some time, from which we can find the
total number of cells (N) and the total cell volume of the
whole population (Vt). The population growth rate must
be equal to the total volume growth rate 1

N
dN
dt = 1

Vt

dVt

dt =
Λp because the cell volume is regulated. We use the total
cell volume to compute Λp because it is more accurate
and tractable to measure the growth rate of the total cell
volume than total cell number in numerical simulations
and analytical analysis.

When a = 0, the concentration of the key protein re-
mains constant as the cell is growing from V = 1 to
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V = 2, and is equal to the accumulation rate, S, of the
key protein. Therefore, all cells grow at the same rate
λ[S], and the population growth rate is equal to the ho-
mogeneous single-cell growth rate Λp = λ[S].
When a = 1, one of the daughter cells does not get any

of the key protein from its mother, while the other one
inherits all the key protein. This leads to a self-similarity
in the population tree (see the illustration in Fig. A1 in
the SI). Consider a tree starting from a single cell with-
out any key protein. The whole tree can then be decom-
posed into subtrees, which are identical to the original
one, except for a temporal shift. The number of cells of
the whole tree grows as N(t) ∼ exp(Λpt). The subtrees
share the same Λp as the whole tree, but with a tempo-

ral shift,
∑i

j=0 τj(S)) (i = 0, 1, 2, ...), where τj(S) is the
generation time of a cell whose amount of key protein at
cell birth is jS (SI (d)). The self-consistent equation of
the population growth rate is

∞
∑

i=0

exp
(

− Λp

i
∑

j=0

τj

)

= 1. (5)

The above equations are satisfied by a unique value of
population growth rate Λp. In Fig. 2(a,b), we plot the
numerical values of Λp when a = 1 based on Eq. 5. We
note that both for the damage and benefit cases, there
exists a special S∗ at which Λp(S∗, a = 1) = Λp(S∗, a =
0) = λ[S∗]. For the damage (benefit) case, a = 0 is fa-
vored to a = 1 if S < S∗ (S > S∗), and a = 1 is favored to
a = 0 if S > S∗ (S < S∗) (Fig. 2(a,b)). Yet, comparing
the two exactly solvable cases (a = 0 and a = 1) is not
sufficient for finding the optimal ac which maximizes the
population growth rate. Moreover, this comparison does
not show how ac changes with the control parameter S.
In the following section, we will introduce the Landau
approach and show that S∗, with the inflection point Sc

of the growth rate function, determines the nature of the
transition from ac = 0 to ac = 1.
Landau approach - We next consider the general case

with a 6= 0. We decompose the growth of total cell vol-
ume (Vt) as the sum of all individual cell contributions,
dVt/dt =

∑

i λ[σi]Vi. Because when a = 0, all cells have
the same protein concentration S, we choose to expand
around σi = S for each cell,

dV

dt
=

∑

i

λ[σi]Vi = V λ[S] +
∑

i

dλ

dσ

∣

∣

∣

S
(σi − S)Vi

+
1

2

d2λ

dσ2

∣

∣

∣

S
(σi − S)2Vi + ...

The first order term vanishes because the total amount
of protein of the entire population,

∑

σiVi = SVt in the
steady state. We define the population’s fitness as f =
Λp − λ[S],

f(S, a) =
1

2

d2λ

dσ2

∣

∣

∣

S
〈(σi − S)2〉v + ...
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FIG. 3. (a) For the damage case, if S∗ < Sc, the fitness
at a = 1 will flip its sign from negative to positive before
its curvature at a = 0 flip its sign from negative to positive
as S increases from 0. This leads to a first order transition
of the optimal asymmetry parameter ac from 0 to 1. The
transition of ac should be sharp as well if S∗ ≈ Sc, because
the fitness at a = 1 and its curvature at a = 0 flip their signs
simultaneously. (b) For the benefit case, because S∗ is far
below Sc, as one increases S from a low value, a small finite
a must exist that maximizes the fitness if S is just below Sc

This leads to a smooth second order transition with a mean
field exponent, ac ∼ (Sc−S)1/2. In (a,b), the optimal ac that
maximizes the fitness for different S is labeled by the blue
circle. (c,d) Numerical simulations of the fitness as function
of a for the damage (c) and benefit (d) cases. Note that in
(c), S∗ ≈ Sc, implying that the intermediate regime where
the fitness is non-monotonic (as illustrated in part (a) of the
figure) is very narrow. For an example of this intermediate
scenario see Fig. S5(f). The black lines are the fits based on
f = C2a

2 + C4a
4 + C6a

6.

where 〈(σi −S)n〉v ≡ (
∑

i(σi −S)nVi)/
∑

i Vi. Note that
the fitness is directly related to the variability of protein
concentration arising from the deterministic asymmetric
partitioning, thus contributing to the population’s phe-
notypic heterogeneity. In the symmetric case (a = 0),
the fitness f is zero by definition. Consider now the
limit 0 < a ≪ 1. Because in the limit of small a,
〈(σi − S)n〉v ∼ an, the lowest order term of the fitness
function has to scale as a2 with its coefficient propor-
tional to the second derivative of the growth rate function
at S,

f = AS2 d
2λ

dσ2

∣

∣

∣

S
a2 + C4(S)a

4 + C6(S)a
6 +O(a8). (6)

Here A is a universal positive number independent of the
growth rate function (SI (h)). The odd order terms van-
ish because of the symmetry f(a) = f(−a), and C4, C6

are constants given a fixed S. We therefore see that the
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sign of the second derivative of the growth rate function
determines whether the symmetric phase a = 0 is a lo-
cal maximum or minimum of the fitness. The inflection
point Sc of the growth rate function, at which its second
derivative vanishes, will be central to the analysis.

For the damage case, we find S∗ ≈ Sc (S∗ = 0.558,
Sc = 0.577, Fig. 2(a)) taking λ0 = 1, λ1 = 0. We nu-
merically confirm this is true for other Hill exponents n
(SI (c)) and prove S∗ ≈ Sc if λ1 = 0 (SI (d)). As one
increases the protein accumulation rate, the fitness at
a = 1 changes from negative to positive when S exceeds
S∗, and the curvature of the fitness at a = 0 changes
from negative to positive when S exceeds Sc (Fig. 3(a)).
Therefore, if S∗ < Sc, as one increases S, the fitness at
a = 1 changes from negative to positive before the cur-
vature at a = 0 changes its sign. Assuming a smooth
interpolation of the fitness function from a = 0 to a = 1,
ac should undergo a first order transition from 0 to 1 as
S increases (Fig. 3(a)). In particular, the transition of
ac should be sharp as well if S∗ ≈ Sc, because the fitness
at a = 1 and its curvature at a = 0 flip their signs simul-
taneously. In SI (f), we also numerically confirm S∗ < Sc

for a finite λ1, so a sharp transition is generally true for
a Hill function which decreases monotonically. We re-
mark that in the case S∗ < Sc, the fitness can exhibit a
minimum at a finite smaller than with the maximum at
a = 1. This non-monotonic shape of fitness can affect the
accessibility of the fitness maximum during the course of
evolution (Fig. S5(f)). In other words, it is insufficient
in this case for cells to develop a mild asymmetry of seg-
regation that will evolve slowly towards larger value: the
evolutionary advantage presents itself only at a critical
value of asymmetry, namely ∆a.

For the benefit case, we find S∗ < Sc (S∗ = 0.378,
Sc = 0.577, Fig. 2(b)) with λ0 = 0.2, λ1 = 1.2. We
numerically confirm that S∗ < Sc for other choices of
Hill exponent (SI (c)) and λ0 (SI (f)). We also rigor-
ously prove S∗ < Sc in the limit λ0 → 0 (SI (d)). As
one increases S from a low value, the fitness at a = 1
changes from positive to negative when S exceeds S∗ and
the curvature at a = 0 changes from positive to negative
when S exceeds Sc (Fig. 3(b)). Therefore, if S∗ < Sc,
a small finite a must exist that maximizes the fitness if
S is just below Sc, and thus we predict a smooth transi-
tion of the optimal ac (Fig. 3(b)). Moreover, by finding
the optimal ac that maximize the fitness using Eq. (6),
we predict that the smooth transition of the benefit case
is in the universality of the Landau mean field model,
namely, ac ∼ |S − Sc|

1/2 [20]. Our conclusion regarding
the sharp transition of ac for the damage case and the
smooth transition for the benefit case is generally true for
different types of growth rate function (SI (i)). In SI(e),
we also explain how to intuitively understand why the
relations between S∗ and Sc are different in the damage
and benefit cases. The main idea is to consider a large
Hill exponent n and estimate the population growth rate

as the average growth rate over all cells in a population.
As quantified in the SI, although the growth rate depen-
dence on protein levels in the benefits and damage case
has a mirror symmetry, the implications for the popula-
tion structure are very different.
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FIG. 4. (a) The optimal ac changes sharply from 0 to 1 at
S∗ for the damage segregation. (b) For benefit segregation,
the optimal ac changes smoothly from 1 to 0, vanishing at
the critical accumulation rate Sc, the inflection point of the
growth rate function (marked as the red circle). The inset
shows the mean field scaling near the critical point where the
black line has a slope 1/2. Arrows indicate the direction of
increasing environmental stress.

Numerical simulations - We test our predictions by
simulating an exponentially growing population based on
Eqs. (1-4) and by setting (n, λ0, λ1) = (2, 1, 0) for the
damage case and (n, λ0, λ1) = (2, 0.2, 1.2) for the benefit
case (see simulation details in SI(a)). We compute the
fitness as f = Λp − λ[S] and plot it against a in Fig.
3(c,d), which are consistent with Fig. 3(a,b). The opti-
mal ac that maximizes the fitness changes from ac = 0 to
ac = 1 abruptly for the damage case and smoothly for the
benefit case, agreeing with our predictions (Fig. 4(a,b)).
For the benefit case, the transition shows a second order
mean field behavior as we predict (see inset of Fig. 4(b)).
Furthermore, we test our Landau approach by fitting the
fitness using f = C2a

2 +C4a
4 +C6a

6 (black lines in Fig.
3(c,d)). The measured ac is consistent with the values
of ac inferred from the Landau expansion. We also plot
the fit using the first two terms in the Landau expansion
which leads to deviations for large a values (SI(g). In
both of the damage and benefit cases, we obtain the co-
efficient A ≈ 0.361 (SI (g)). In SI (h), we find that the
value of A is independent of the growth rate function,
and it equals 1/(4 ln(2)) ≈ 0.361. This is related to the
variance of the key protein numbers at cell birth.

Discussion - In this paper we studied the optimal seg-
regation strategy of a protein whose presence may be
beneficial or deleterious to cellular growth. We found
that the optimal degree of asymmetry which maximizes
the population growth rate shows a rich behavior and
in particular a phase transition taking a different form in
the case of damage or benefit segregation: a sharp transi-
tion from purely symmetric to asymmetric segregation is
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found in the former, while a smooth (second order) tran-
sition from asymmetric to symmetric segregation occurs
in the latter. Our results are consistent with the segre-
gation of damaged proteins in certain organisms, such as
fission yeast in which a transition from symmetric segre-
gation to asymmetric phase is observed as the environ-
mental stress increases [7, 24–27]. In these organisms,
complex molecular machinery, e.g., Hsp16, has evolved
that actively fuse damaged proteins to achieve completely
asymmetrical segregation between the two daughter cells
(a = 1). This suggests that cells may have some control
over the segregation ratio by tuning the activity levels
of the machinery involved in the asymmetric segregation
of damaged protein, making the question we studied here
relevant to understanding the optimization problem faced
by evolution. Similarly, the beneficial drug pumps in E.

coli are segregated asymmetrically between the old-pole
and new-pole daughter cells [12]. Consistent with our
predictions, a continuous change of the asymmetry de-
gree a from 0.06 to 0.2 measured from the relative dif-
ference between two daughter cells was observed as the
subinhibitory antibiotic concentration increases in the ex-
periments.
Our model can be modified to explain asymmetry in

various contexts of cell biology. For example, in some
organisms, it might be more accurate to consider a as a
function of the current state [3, 4]. It would be interesting
to investigate the optimal segregation strategy in such a
case, where the segregation process is passively controlled
by the current protein concentration.
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I. M. Tolić-Nørrelykke, Current Biology 23, 1844 (2013).

[8] M. Watve, S. Parab, P. Jogdand, and S. Keni, Pro-
ceedings of the National Academy of Sciences 103, 14831
(2006).

[9] M. Ackermann, L. Chao, C. T. Bergstrom, and M. Doe-
beli, Aging Cell 6, 235 (2007).

[10] L. Chao, C. U. Rang, A. M. Proenca, and J. U. Chao,
PLoS Computational Biology 12, e1004700 (2016).

[11] N. Avraham, I. Soifer, M. Carmi, and N. Barkai, Molec-
ular systems biology 9, 656 (2013).

[12] T. Bergmiller, A. M. Andersson, K. Tomasek, E. Balleza,
D. J. Kiviet, R. Hauschild, G. Tkačik, and C. C. Guet,
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