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We study the disorder-perturbed transport of two noninteracting entangled particles in the ab-
sence of backscattering. This situation is, for instance, realized along edges of topological insula-
tors. We find profoundly different responses to disorder-induced dephasing for the center-of-mass
and relative coordinates: While a mirror symmetry protects even highly delocalized relative states
when resonant with the symmetry condition, delocalizations in the center-of-mass (e.g. two-particle
(N = 2) N00N states) remain fully sensitive to disorder. We demonstrate the relevance of these
differences to the example of interferometric entanglement detection. Our platform-independent
analysis is based on the treatment of disorder-averaged quantum systems with quantum master
equations.

Introduction. Uncontrolled perturbances (disorder)
can significantly modify the expected or, for that matter,
desired transport behavior of quantum particles. This
does not only hold for their overall mobility properties,
which have traditionally been intensively investigated [1–
3], but also for the detailed phase information encoded
in quantum states. The latter, in turn, controls the par-
ticles’ ability to interfere and thus underlies their utiliza-
tion in quantum experiments and technologies.

The preservation of phase relations during transport
is a delicate task, even if backscattering, localization,
and environmental decoherence are negligible. In the
case of single particles, it has been shown that disorder-
induced dephasing can, depending on state specifications
and dispersion, significantly reduce the fidelity of inter-
ference applications, possibly putting their successful de-
ployment at stake [4, 5].

Several quantum aspects, such as entanglement and
particle statistics, only arise for two or more particles,
causing genuine quantum behavior, such as nonclassi-
cal correlations, quantum teleportation, (anti-)bunching,
etc. [6–13]. Again, phase information plays here a crucial
role, and analyzing the effect of disorder beyond localiza-
tion is important for potential applications. On the other
hand, new insights into the interplay between the impact
of disorder, entanglement, and particle statistics are ex-
pected to emerge.

In this article, we systematically study the effect of
disorder potentials on the backscattering-free transport
of two-particle entangled states, cf. Fig. 1, relevant to
topological edge modes in photonic and condensed mat-
ter systems [14, 15]. Our analytical treatment of the
disorder impact in terms of ensemble-averaged quantum
states reveals a mirror symmetry in the response to dis-
order, which can be exploited to achieve disorder-robust
transport of entangled states. We stress that this ro-
bustness lies in the phase information of the two-particle
state and emerges when both particles simultaneously re-

side in the same pairs of spatial locations; it cannot be
understood simply in terms of the absence of backscat-
tering of single particle or N00N states [16–18]. Our
findings, along with a similar effect in the response of
two identical particles to environmental dephasing [19],
thus demonstrate potential to enhancing topological pro-
tection using multi-particle states.
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FIG. 1. (a) Disorder-perturbed transport of two-particle en-
tangled edge modes. While topologically protected against
backscattering, perturbations (schematic, blue) along the
paths of the particles still cause disorder-induced dephasing,
deteriorating the possibility to detect and/or harness their en-
tanglement. (b) Disorder-induced dephasing degrades, e.g.,
two-particle coherence effects, such as (anti-)bunching at
beam splitters. If cascaded, the disorder impact accumulates.

Disorder-averaged evolution. We consider
backscattering-free propagation of two spinless quantum
particles in one dimension, described by a common, con-
stant drift velocity v. This generalizes the single-particle
case discussed in [5]. To be general, we consider two
distinguishable particles. This encompasses identical
particles, either by appropriately symmetrizing initial
states, or if additional internal degrees of freedom, in
the case of photons, e.g., polarization, lift the symmetry
constraints on the spatial state component.

The Hamiltonian in the presence of a disorder potential
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then reads (v > 0)

Ĥε = v(p̂1 + p̂2) + Vε(x̂1) + Vε(x̂2), (1)

where x describes the position along the edge. The
(multi-)index ε labels different disorder realizations,
which may occur with probability pε (for simplicity we
write integrals throughout, e.g.,

∫
dε pε = 1).

Both particles encounter the same, homogeneous, dis-
order potential Vε(x̂) =

∫∞
−∞ dxVε(x)|x〉〈x|, charac-

terized by translation-invariant two-point correlations
C(x− x′) ≡

∫
dε pε Vε(x)Vε(x

′) =
∫∞
−∞ dq e

i
~ q(x−x

′)G(q),
where the distribution G(q) (see also Refs. [4, 20]) de-
scribes the correlations in momentum space. For sim-
plicity, the disorder potential may also vanish on aver-
age,

∫
dε pε Vε(x) = 0, such that the average Hamiltonian

reads Ĥ ≡
∫

dε pε Ĥε = v(p̂1 + p̂2).
In the limit of weak disorder, the dynamics of the

disorder-averaged state ρ(t) =
∫

dε pεe
− i

~ Ĥεtρ0e
i
~ Ĥεt can

be described by a quantum master equation [4, 5, 20–
22], which is perturbative to second order in the dis-
order potential [4]. Abbreviating L(L̂, ρ) ≡ L̂ρL̂† −
1
2 L̂
†L̂ρ− 1

2ρL̂
†L̂, and using C(x− x′) and Ĥ, we obtain

the disorder-dressed evolution equation

∂tρ(t) =− i

~
[Ĥ, ρ(t)] (2)

+
∑

α∈{±1}

2α

~2

∫ ∞
−∞

dq G(q)

∫ t

0

dt′L
(
L̂

(α)
q,t′ , ρ(t)

)
,

with the Lindblad operators L̂
(α)
q,t = 1

2

[
V̂q + α ˆ̃Vq(t)

]
,

where V̂q = e
i
~ qx̂1 + e

i
~ qx̂2 and ˆ̃Vq(t) = e−

i
~vqtV̂q. Note

that the V̂q describe simultaneous, coherent momentum
kicks of both particles. This follows from the fact that
both particles encounter the same disorder potential, in-
troducing correlations relevant at common locations of
the two particles.

Recasting Equation (2) in terms of center-of-mass,
xcm = (x1+x2)/2, and relative coordinate, xrel = x1−x2,
yields

∂tρ(t) =− i

~
[vp̂cm, ρ(t)] (3)

+

∫ ∞
−∞

dq
8tG(q)

~2
sinc

[
qvt

~

]
L
(
L̂q, ρ(t)

)
,

with the Lindblad operators L̂q = e
i
~ qx̂cm cos

[
qx̂rel

2~

]
. We

find that center-of-mass and relative coordinate are af-
fected differently by the disorder potential: While the
former behaves similarly to a disorder-pertubed single-
particle edge state (cf. [5]), the latter experiences coher-
ent momentum kicks in opposing directions. The solution
of (3) reads [G(−q) = G(q)] 〈xcm, xrel|ρ(t)|x′cm, x

′
rel〉 =

〈xcm − vt, xrel|ρ0|x′cm − vt, x′rel〉 (4a)

× exp
[
−F t(xcm, xrel, x

′
cm, x

′
rel)
]
,

where ρ0 describes an arbitrary initial state, and with
the disorder influence

F t(xcm, xrel, x
′
cm, x

′
rel) =

4t2

~2

∫
dq G(q) sinc2

[
qvt

2~

]
×

{
1

2
cos2

[qxrel

2~

]
+

1

2
cos2

[
qx′rel

2~

]
(4b)

− cos

[
q(xcm − x′cm)

~

]
cos
[qxrel

2~

]
cos

[
qx′rel

2~

]}
.

Note that (4b) reduces to the single-particle case when
evaluated for xrel = x′rel = 0, describing a decoherence
cone, with coherences between remote points xcm and
x′cm decaying homogeneously with increasing spatial sep-
aration, cf. [5]. In the relative coordinate, however, one
finds, for xcm = x′cm, that coherences of mirror points
xrel and −xrel are robust against disorder effects, inde-
pendently of their spatial separation, see Fig. 2. This is
because, in this instance, both particles simultaneously
reside in the same pair of spatial locations, such that
the different phases acquired from the disorder potential
cancel each other exactly (or rather cause an irrelevant
global phase). This insight will guide us to identify spa-
tially delocalized disorder-robust entangled states. We
remark that this symmetry can be related to the permu-
tational invariance of the Hamiltonian (1).

FIG. 2. Disorder influence (4b) for a pair of propagating edge
modes [Gaussian disorder correlations, t = 10`/v, values in-
crease from 0 (blue)]. (a) While the center of-mass coordinate
shows a dephasing behavior similar to a single particle, with
coherences between coordinates xcm and x′cm homogeneously
degrading with their increasing separation, (b) coherences be-
tween mirror points xrel and −xrel of the relative coordinate
remain unaffected by disorder-induced dephasing, regardless
of their spatial separation. This is because both particles ac-
quire the same disorder phases which thus cancel out.

While Solution (4) holds for arbitrary correlations
C(x), we can evaluate the disorder influence for

generic Gaussian correlations C(x) = C0 exp
[
−
(
x
`

)2]
,

where ` denotes the correlation length. With

G(q) ≡ 1
2π~

∫∞
−∞ dx e−

i
~ qxC(x) = C0`

2
√
π~e−

1
4 ( q`~ )

2

,
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one then obtains F t(xcm, xrel, x
′
cm, x

′
rel) =∑

σ1,σ2=±1 F
(1)

t ([xcm − x′cm] + σ1[xrel + σ2x
′
rel]),

with the single-particle disorder influence F
(1)

t (x) =
C0`

2

~2v2

{
2f
(
vt
`

)
+ 2f

(
x
`

)
− f

(
x−vt
`

)
− f

(
x+vt
`

)
− 2f(0)

}
and f(x) = x erf(x) + (e−x

2

/
√
π) [5]. Hereafter, we

always assume Gaussian correlations when the disorder
influence is evaluated.

Two-particle interference. To assess the disorder ro-
bustness at mirror points, we now investigate how the
disorder-perturbed edge propagation affects entangled
states supporting two-particle interference. To this end,
we consider superpositions states delocalized in the rela-
tive coordinate,

|ΨRI〉 =

√
σp,cm

π~σx,rel

∫
dxcm dxrel |xcm〉 ⊗ |xrel〉 (5)

× e−
σ2p,cmx

2
cm

~2
1√
2

(
e
− (xrel−xL)2

4σ2
x,rel + eiϕ e

− (xrel−xR)2

4σ2
x,rel

)
,

where we assume that the spatial delocalization ∆xrel ≡
|xL − xR| of the two state components well exceeds their
uncertainty, ∆xrel � σx,rel. The mirror condition is ful-
filled if xL = −xR. Note that it must be met by identical
particles, unless additional degrees of freedom lift the
symmetry constraints. The phase ϕ may accomodate
for (anti-)symmetric states under particle exchange. For
simplicity, we assume ϕ = 0.

The bipartite entangled state (5) supports two-particle
interference in the relative momentum, as seen by in-
spection of its momentum distribution, PRI(pcm, prel) ≡
|〈pcm, prel|ΨRI〉|2 ∝

e
− p2cm

2σ2p,cm e−
2σ2x,relp

2
rel

~2

{
1 + cos

[
prel∆xrel

~

]}
. (6)

In this sense, it generalizes Young interference experi-
ments to the bipartite case [23]. Such interference pat-
tern could, for instance, be measured by guiding the state
into a Mach-Zehnder interferometer arrangement.

The interference pattern (6), characterized by the de-
localization ∆xrel, occurs irrespectively of whether the
mirror condition is met or not. Moreover, it is unaf-
fected by additional correlations within the two super-
posed state components, which could be replaced by sep-
arable states. In that sense, we can, if the mirror con-
dition is met, associate (5) with the time-bin entangled
state 1√

2
(|e〉1|l〉2 + eiϕ|l〉1|e〉2) [16, 24–27], where |e〉 and

|l〉 denote ahead-moving (“early”) and following (“late”)
wave packets.

To detect the entanglement of (5), we employ an in-
terferometric entanglement criterion, which is formulated
in terms of the modular variables x = x mod ∆xrel and
p = (p+h/2∆xrel) mod (h/∆xrel)−h/2∆xrel, and their
respective integer components Nx = [(x− vt)− x]/∆xrel

(using a comoving origin of the coordinate system) and

Np = (p− p)∆xrel/h [28, 29]. With Nx,tot ≡ Nx,1 +Nx,2
and prel ≡ p1 − p2, the entanglement criterion reads

[23, 29] 〈(∆N̂x,tot)
2〉 +

∆x2
rel

h2 〈(∆p̂rel)
2〉 < 2CN̂x,p̂, where

the constant CN̂x,p̂ is obtained numerically to CN̂x,p̂ ≈
0.078. A state which satisfies the criterion is certified to
be entangled. We note that applying this entanglement
criterion presupposes distinguishable particles, which we
assume now for demonstrational purposes. The interfer-
ence is also present for identical particles.

For the unperturbed superposition state (5), we
have (∆xrel � σx,rel, ~/σp,cm) 〈(∆N̂x,tot)

2〉 ≈ 0 and
∆x2

rel

h2 〈(∆p̂rel)
2〉 = 1

6 [1− S2(2)], with S2(2) = 3
π2 ≈ 0.304.

The LHS thus evaluates as 0.117, which is well below
the threshold value of 0.156, classifying the state as en-
tangled. An Einstein-Podolsky-Rosen entangled state,
on the other hand, corresponding to a single super-

position branch in (5), would yield
∆x2

rel

h2 〈(∆p̂rel)
2〉 =

1
6 [1− S2(1)] ≈ 0.167, exceeding the threshold value.

We now numerically evaluate the entanglement crite-
rion for the state (5) when evolved under (4) for the three
cases (i) xL = −10` and xR = 10`, (ii) xL = −12` and
xR = 8`, and (iii) xL = −13` and xR = 7`. While
all support the same initial interference pattern (6) with
∆xrel = 20`, (i) meets the mirror condition, whereas (ii)
and (iii) exhibit increasing mismatches. In all three cases,
we choose σx,rel = `, σp,cm = `/~, and, for demonstra-
tional purposes, strong disorder at C0 = ~2v2/`2. In
(iv) we choose the same parameters as in (i), but with
σx,rel = `/2. We note that, assuming Gaussian disorder
statistics, (3) and (4) remain valid for strong disorder [5].

Fig. 3 shows the disorder impact at t = 25`/v, i.e.,
after the disorder impact has saturated. We find that,
while the center-of-mass coherences decay, correlations
between Nx,1 and Nx,2 remain unaffected [this follows
directly from the solution (4)], and accordingly the cor-
responding variance 〈(∆N̂x,tot)

2〉 remains close to 0. The
momentum interference, however, undergoes a mismatch-
controlled visibility reduction. Notably, the interference
maintains full contrast in the center of the envelope in
(and only in) the mirror case. For the resulting variances
∆x2

rel

h2 〈(∆p̂rel)
2〉 we obtain (i) 0.136 [red solid in (c)], (ii)

0.156 [red solid in (d)], (iii) 0.161 [blue dotted in (d)], and
(iv) 0.120 [blue dotted in (c)]; i.e., while in (i) and (iv)
the variance remains well below, in (ii) it has reached,
and in (iii) it has surpassed the entanglement detection
threshold. Comparing (i) and (iv), we find that σx,rel < `
further mitigates the visibility reduction, indicating that
σx,rel / ` further supports disorder-robust transport, in
particular in the near-dispersionless transport of edge
modes.

Our previous analysis renders apparent that this ro-
bustness is independent of the delocalization ∆xrel. This
confirms that the resonance-like disorder immunity at
mirror points xrel and −xrel enables the disorder-robust
transport of highly delocalized states displaying two-
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FIG. 3. Disorder-perturbed evolution of the relative-state
superposition (5). (a) While the center of mass state
〈xcm, xL|ρRI(t)|x′cm, xL〉 undergoes a decay of coherences, (b)
the correlations in 〈(x1, x2|ρRI(t)|x1, x2〉 between the parti-
cle coordinates x1 and x2 remain unaffected. Depending on
how well the mirror condition xL = −xR is met, the visibil-
ity loss in the interference pattern displayed by the relative
momentum is (c) controllable or (d) exceedingly detrimental.

particle interference.
N = 2 N00N state interference. To further assess

the significance of the symmetry-mediated transport, we
now contrast it with two-particle N00N (“2002”) states,
where the two particles “bunch” at one out of two spa-
tially separated locations, i.e., the superposition is now
in the center-of-mass coordinate:

|Ψ2002〉 =

√
σp,cm

π~σx,rel

∫
dxcm dxrel |xcm〉 ⊗ |xrel〉 (7)

× 1√
2

(
e−

σ2p,cm(xcm−xL)2

~2 + e−
σ2p,cm(xcm−xR)2

~2

)
e
− x2rel

4σ2
x,rel

This (symmetric) state, which can be associated with the
time-bin entangled state 1√

2
(|e〉1|e〉2 + |l〉1|l〉2), displays

two-particle interference similar to (6), with the same
period ∆xrel, but in the center-of-mass momentum pcm,
cf. Fig. 4.

In Fig. 4, we show the N00N state (7) when evolved
under (4), with the same parameters as in case (i) above
(mirror condition met). We find that, already at t =
1 `/v and in stark contrast to case (i) above, the visi-
bility is strongly suppressed. Consequently, the variance

of p̂cm ≡ p̂1 + p̂2 evaluates as
∆x2

rel

h2 〈(∆p̂cm)2〉 ≈ 0.159,
exceeding the entanglement detection threshold of the

corresponding criterion 〈(∆N̂x,rel)
2〉+

∆x2
rel

h2 〈(∆p̂cm)2〉 <
2CN̂x,p̂, where N̂x,rel ≡ N̂x,1 − N̂x,2. This disorder sen-
sitivity is, of course, because the delocalization in the
center-of-mass coordinate is, due to the absence of the

mirror-point symmetry, not protected. This highlights
a significant difference in the disorder impact between
different choices of time-bin entangled states.

(a) (b)

FIG. 4. Disorder-perturbed transport of the two-particle
(N = 2) N00N state (7). (a) The mirror-point symmetry
protects the coherences in the relative coordinate. (b) Its ab-
sence in the delocalized center-of-mass coordinate, however,
causes rapid and substantial visibility loss in the center-of-
mass momentum interference, highlighting the difference in
the disorder sensitivity between different choices of entangled
states.

Robust entanglement in the Haldane model. The con-
tinuum model Eq. (1) describes the long wavelength limit
of unidirectional edge states in a variety of systems, but
neglects finite size effects, such as dispersive wavepacket
broadening and imperfect excitation of the topological
edge states. The above analysis should therefore be seen
as a baseline for dephasing of quantum states. To inde-
pendently verify our results and show the persistence of
robust entanglement transport in smaller, discrete sys-
tems, we simulate the propagation of two-photon states
in the disordered Haldane model using the Schrödinger
equation, described by the Hamiltonian [17, 30, 31] [32]

Ĥ =
∑
j

(ω
(a)
j â†j âj + ω

(b)
j b̂†j b̂j) + t1

∑
<j,k>

(â†j b̂k + b̂†j âk)

+ t2
∑
�j,k�

(â†j âke
iφjk + b̂†j b̂ke

−iφjk), (8)

where â†j (b̂†j) creates a particle on the a (b) sublattice

in unit cell j, ω
(a,b)
j ∈ [−W/2,W/2] are random un-

correlated potentials, t1, t2 are nearest and next-nearest
neighbor hopping strengths respectively, and flux sign
φjk = ±φ alternates between adjacent next-nearest
neighbors. We use the same parameters as in Ref. [17]:
t1 = 1, t2 = 0.2, φ = −π/2, for which the gap size is
6
√

3t2 sinφ ≈ 2, and a lattice size of Nx ×Ny = 128× 6
cells, with zigzag and armchair edges. We take strong
disorder W = 1.5 (comparable to the gap size and be-
yond the validity of any perturbative treatment) and an
ensemble of 100 disorder realizations. The disorder po-
tential is uncorrelated, but the lattice period a = 1 sets
a characteristic length scale for momentum broadening.

We consider the initial states Eq. (5) with σx,rel = 2,
σp,cm = 2, perfect localization to the long (zigzag) edge,
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FIG. 5. Disorder-perturbed evolution of relative-state super-
positions Eq. (5) in the Haldane model. (a) Correlations in
real space coordinates x1 and x2 exhibit broadening due to
the edge state dispersion. (b) Interference in the relative mo-
mentum is only robust when the mirror condition is satisfied
(solid red line). The mirror-broken state xL = −32, xR = 8
(blue dashed line) has significantly lower visibility.

and tilted to excite the zigzag edge modes centred at
momentum pcm = π (with group velocity v ≈ 0.8).
This simple, experimentally-feasible initial condition can-
not perfectly excite the edge modes and some energy
is lost into the bulk [7–10]. We compute the correla-
tion functions along the edge after a propagation time
t = 50/v, similar to Fig. 3. The real space correlations
of the mirror-symmetric state plotted in Fig. 5(a) show
diffractive broadening introduced by the edge states’
nonzero dispersion. Nevertheless, the mirror symmetry
is preserved during propagation, resulting in robust two-
particle interference in the relative momentum. Fig. 5(b)
reveals remarkably high visibility (≈ 95%) for exact mir-
ror symmetry (xL = −20, xR = 20) and significantly
reduced visibility (≈ 15% for xL = −32, xR = 8) for
mirror-broken states. Moreover, under the same condi-
tions N = 2 N00N states suffer an almost complete loss
of interference visibility (to ≈ 8%) within t = 5/v.
Discussion. We have shown, analytically and nu-

merically, that backscattering-free disordered transport
in topological edge states can exhibit a stronger form
of robustness in the multi-particle case: by employ-
ing suitably-chosen entangled states, one can achieve
disorder-robust transport of relative phases and en-
tanglement between spatially or temporally-separated
wavepackets, which is of utmost importance for appli-
cations such as interferometry and buffering of signals
in quantum networks. This disorder-robust entangle-
ment transport cannot be understood simply in terms
of the familiar single particle “immunity to backscatter-
ing” picture. Our predictions can be readily observed by
propagation of entangled two photon edge states in two-
dimensional topological waveguide arrays [10, 33–36] or
coupled resonator lattices [16, 18]. Near-future electronic
implementations are also conceivable [37, 38], e.g. using
spin-momentum locked quantum wires [39].

We expect analogous conditions for disorder-robust
transport hold for three or more particles, which would
not only allow preservation of many-particle interference,

but generally help to assess the disorder impact on multi-
partite interference devices [cf. Fig 1(b)], and, ultimately,
further deepen our understanding of the relation between
disorder and many-particle physics beyond localization.
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