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Motivated by electronic transport in graphene-like structures, we study the diffusion of a classical
point particle in Fermi potentials situated on a triangular lattice. We call this system a soft Lorentz
gas, as the hard disks in the conventional periodic Lorentz gas are replaced by soft repulsive scat-
terers. A thorough computational analysis yields both normal and anomalous (super) diffusion with
an extreme sensitivity on model parameters. This is due to an intricate interplay between trapped
and ballistic periodic orbits, whose existence is characterized by tongue-like structures in parameter
space. These results hold even for small softness showing that diffusion in the paradigmatic hard
Lorentz gas is not robust for realistic potentials, where we find an entirely different type of diffusion.

The rise of new micromanipulation techniques, molec-
ular nanodevices and nanotechnologies has fuelled the
scientific interest in small systems [1-4]. These are ob-
jects composed of small numbers of particles far from
the thermodynamic limit, which exhibit only a few rel-
evant degrees of freedom [4]. Their microscopic equa-
tions of motion are typically highly nonlinear yielding
fluctuations with macroscopic statistical properties rem-
iniscent of interacting many-particle systems. Small sys-
tems can thus serve as a laboratory for understanding the
emergence of irreversibility and complexity from chaotic
dynamics [5, 6]. They become especially interesting un-
der nonequilibrium conditions, where they exhibit macro-
scopic transport phenomena like diffusion. By combin-
ing nonlinear dynamics with nonequilibrium statistical
physics the origin of macroscopic transport from micro-
scopic chaos in small systems was explained by formulas
expressing transport coefficients in terms of dynamical
systems quantities [7-10]. Similarly irreversible entropy
production was found to emerge from fractal measures
[7, 8] and fractal attractors [10-12]. These results paved
the way for fundamental concepts like the chaotic hy-
pothesis generalising Boltzmann’s ergodic hypothesis [13]
and fluctuation theorems generalising the second law of
thermodynamics [4, 8, 9, 14].

Classical transport in small systems has a quantum
mechanical analogue as electronic transport in solid-
state nanodevices [15]. Recently growing interest has
been attracted by periodic nanosystems such as artificial
graphene [16] fabricated in semiconductor heterostruc-
tures [17-19] or on metallic surfaces [20, 21]. In the latter
case, the electrons are confined to a honeycomb geometry
by CO molecules positioned with a scanning tunneling
microscope in a triangular configuration. This system
exhibits the properties of graphene but in a setup that is
tunable regarding, e.g., the electronic density, lattice con-
stant, geometry, and the coupling with the enviroment.

Interestingly, the topology of “molecular graphene” as
described above is exactly the same as one of the most

paradigmatic models in dynamical systems theory, the
periodic Lorentz gas [7-9, 22-24]. Lorentz gases mim-
ick the motion of classical electrons in metals. They
consist of a point particle scattering elastically with
fixed hard spheres distributed either randomly or peri-
odically in space. Originally they were devised to repro-
duce Drude’s theory from microscopic dynamics [22]. In
groundbreaking mathematical works Lorentz gases were
shown to exhibit chaos and well-behaved transport prop-
erties [25, 26], followed by understanding diffusion in
computer simulations combined with stochastic theory
[27-29]. Lorentz gases thus became standard models to
explain the interplay between chaos and transport: High-
lights were a proof of Ohm’s law from first principles [30],
the analytical and numerical calculation of Lyapunov ex-
ponents [7, 8, 12] and fractal attractors [12], as well as
developing a chaotic scattering theory of transport [7].
The growing interest in graphene-like systems now brings
direct technological relevance to investigate classical dif-
fusion in soft Lorentz gases equipped with more realistic
potentials.

The conventional two-dimensional periodic Lorentz gas
is a Hamiltonian particle billiard in which a point particle
of mass m performs free flights with constant velocity
v between elastic collisions at hard disks of radius rg.
The centers of these disks form the nodes of a triangular
lattice with lattice spacing 2ry + w, where w denotes
the smallest distance between two nearby disks. Here,
following previous studies on artificial graphene [31], we
introduce a soft Lorentz gas, where the hard disks are
replaced by Fermi potentials,

_ 1
e (I = r0)/o)

Vi(r) (1)

with o determining the softness of the potential; see
Fig. 1. Related models have been used to reproduce
experimental results on the magnetoresistance of elec-
trons in semiconductor antidot lattices [32-36]. In the



FIG. 1: The soft Lorentz gas: A point particle moves in a
plane of partially overlapping Fermi potentials (inset) whose
centres are situated on a triangular lattice (main figure). The
dotted lines are contour lines, w denotes the minimal distance
between adjacent potentials for total energy F = 1/2, and A
defines a triangular unit cell. The inset shows Fermi poten-
tials along the dashed (blue) line in the main part

for different values of the softness parameter o defined in
Eq. (1).

following we set m = ryg = 1 by keeping the total energy
constant, £ = 1/2. We thus have two control parame-
ters, o and the minimal gap size w between two nearby
potentials for the given energy E. Making o smaller
we approach the hard scatterer limit of the conventional
Lorentz gas. A crucial question is to which extent chaotic
diffusion in the hard Lorentz gas [7-9, 22-24, 30] is ro-
bust by softening the potential, i.e., for more realistic
models. In this Letter we show that even a slight soften-
ing introduces substantial additional complexity leading
to entirely new transport properties.
Our key quantity is the diffusion coefficient
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where the numerator denotes the mean square displace-
ment (MSD) for the position r(t) of a particle at time t.
The angular brackets hold for an ensemble average over
initial conditions. If the MSD grows linearly in time,
the above limit exists and the system exhibits normal
diffusion. If the MSD grows faster than linear in time
this limit diverges, and the system displays superdiffu-
sion [37]. Technical details of the simulations carried out
with the Bill2D software package [38] are explained in
Sec. 1 of our Supplemental Material [39], which includes
Ref. [40].

Figure 2 depicts the diffusion coefficient D as a func-
tion of the gap size w between the scattering centers for a
slightly softened (main part) and the hard (inset) Lorentz
gas. While for the hard scatterers D(w) is monotonically
increasing and looks rather smooth, in the soft model D is
a non-monotonic, highly complicated function of w. This
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FIG. 2: Diffusion coefficient D as a function of the gap size
w. The (blue) wiggled line shows simulation results for D(w)
Eq. (2) in a slightly softened potential (o = 0.05 in Eq. (1)).
The thick (orange) line represents the corresponding ana-
lytical random walk approximation Dp, the thin (red) line
the numerical D num as explained in the text. The labeled
numbers 3(a) to (d) refer to the periodic orbits depicted in
Fig. 3. Grey columns indicate parameter intervals in which
D(w) does not exist. The inset displays D(w) obtained from
simulations for the conventional hard Lorentz gas [49].

suggests that the diffusive properties must have changed
profoundly. The diffusion coefficient for the hard Lorentz
gas has been analysed in detail in previous literature, cf.
Sec. 3.A in [39], which includes Refs. [41-48]. Here we
first explore whether there is any simple diffusion law for
the soft model revealing an at least on average mono-
tonic increase of D(w) by ignoring any fine structure.
We find that a Boltzmann-type random walk approxi-
mation works well to understand the coarse functional
form of D(w) [49]. For this we assume that diffusion is
governed by ‘flights’ of length /. during time intervals
7. after which a particle experiences a ‘collision’. We
define a collision as an event where a particle hits the
contour line of a scatterer at E = 1/2 in the triangular
unit cell A displayed in Fig. 1. By assuming in the spirit
of Boltzmann’s molecular chaos hypothesis that all col-
lisions are uncorrelated, the diffusion coefficient can be
approximated as Dp(w) = £2(w)/(47c(w)). In Sec. 2 of
[39] we derive an analytical formula for Dp as well as
an improved numerical version Dpg num. The results are
shown as a pair of lines in Fig. 2: Both yield an approx-
imately linear increase of D for larger w, which matches
well to the coarse functional form of the simulation re-
sults. For smaller w our analytical aproximation does not
reproduce the onset of diffusion correctly while our im-
proved numerical version captures it at least qualitatively
well.

We now focus on the pronounced irregular fine struc-
ture of D(w) in the soft system, which is in sharp
contrast to the diffusion coefficient of the hard disk
model. Irregular diffusion coefficients have been re-



FIG. 3: Periodic orbits and islands of periodicity in phase
space at different parameter values w corresponding to Fig. 2.
Shown in position space are characteristic periodic orbits for
(a) w =0.234, (b) w = 0.31, (¢) w = 0.46, (d) w = 0.18. (a)
and (b) feature quasi-ballistically propagating orbits yielding
superdiffusive parameter regions in Fig. 2 while (¢) and (d)
generate local minima in D(w). The insets display associated
islands of periodicity in the Poincaré surface of section phase
space (z,sinf) as defined in the text.

ported for parameter-dependent deterministic diffusion
in much simpler chaotic dynamical systems, such as one-
dimensional maps [50-53], the standard map [54, 55] and
particle billiards [49, 56-58]. To our knowledge this is the
first time that a diffusive fine structure has been unam-
biguously revealed in quite a realistic soft Hamiltonian
system. For the hard Lorentz gas irregularities in D(w)
also exist but are extremely tiny [49, 59], hence barely
visibly in Fig. 2. A second crucial difference is that our
softened model generates an intricate set of superdiffu-
sive parameter regions in which D(w) does not exist. The
hard Lorentz gas displays only superdiffusion for all pa-
rameters w > wq after a specific geometric transition at
Weo =~ 0.3094 [60, 61] by exhibiting superdiffusion that is
different from the soft model as discussed in Sec. 3.A of
[39].

The origin of the anomalous diffusion as well as of the
irregularities in D(w) of the soft Lorentz gas can be un-
derstood in terms of periodic orbits [52, 53, 59, 62, 63],
as is explained by Fig. 3. It shows orbits both in posi-
tion space and insets of corresponding Poincaré surfaces
of section at four specific parameter values of w: Figs. 3
(a) and (b) refer to quasi-ballistically propagating pe-
riodic orbits while (¢) and (d) represent localised ones.
These periodic orbits exhibit different structures due to
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FIG. 4: Regions of periodic orbits in the parameter space of
gap size w and potential softness parameter o. Blue dots rep-
resent localised periodic orbits like (c), (d) in Fig. 3 while red
dots correspond to quasi-ballistic orbits like (a), (b) therein.
The black horizontal line at ¢ = 0.05 yields a cut through
the parameter space corresponding to the diffusion coefficient
D(w) in Fig. 2.

different types of scattering, as is reflected in the cor-
responding Poincaré surfaces of section. The variables
(x,sin 0) for the latter are defined on the boundary where
a particle leaves the unit cell A in Fig. 1. Here x rep-
resents the position of the particle in a gap, sinf is the
angle between its velocity vector and the normal to the
boundary. These islands of periodicity are typically ex-
tremely small and very difficult to detect in the whole
phase space. By matching the parameter values of w for
these periodic orbits to the structure of D(w) in Fig. 2
we see that the two propagating orbits correspond to
two superdiffusive regions while the two localised orbits
identify (approximately) two local minima in the curve.
While localised orbits only slightly suppress normal diffu-
sion without making it anomalous [50, 59, 64], islands of
periodicity in phase space, also called accelerator modes
[54, 55], generate superdiffusion [37, 65-67]. A more de-
tailed analysis yields that all these periodic orbits are
topologically extremely unstable under parameter varia-
tion: They exhibit complicated bifurcation scenarios that
eventually destroy any superdiffusive window leading to
parameter regions of normal diffusion before new bifur-
cations create new superdiffusive windows [68].

Periodic orbits thus form the backbone to understand
the complicated structure of the parameter-dependent
diffusion coefficient in Fig. 2. We now explore them in
the full parameter space (w, o). For each point in (w, o),
the numerical discovery of a localised periodic orbit or a
quasi-ballistic trajectory is marked in Fig. 4 as a blue or
a red dot, respectively. Interestingly, our chart reveals a
very regular topological structure underlying the seem-
ingly totally irregular curve of D(w) in Fig. 2, which lives
on the horizontal black line at ¢ = 0.05 in Fig. 4. We see
that all periodic orbits form regular ‘tongues’ in param-



eter space which, however, we could not fit with simple
functional forms like exponential, stretched exponential,
or power laws. Whenever a tongue crosses the horizontal
black line at ¢ = 0.05 we have a local extremum in the
D(w) curve of Fig. 2. Further details of this connection
are described in Ref. [68]. In Sec. 3.B of [39] we explore
the impact of these tongues on the diffusion coefficient
under variation of 0. Therein we see that on a coarse
scale D(w) of the hard Lorentz gas is approached con-
tinuously by decreasing o, interrupted by superdiffusive
regions due to quasi-ballistic tongues. This scenario is
in line with a mathematical theory on the existence of
elliptic islands in the phase space of closed, non-diffusive
billiards that are softened [69, 70]. In these references
the authors conjecture that islands are dense with re-
spect to Lebesgue measure in parameter space for small
o. If this holds true one expects D(w) to be an irregu-
lar curve on arbitrarily fine scales with fractal properties
[9, 50, 51, 59, 64].

In summary, we have studied diffusion under parame-
ter variation in a soft Lorentz gas, which we put forward
as a model for electronic transport in artificial graphene.
We have found that the normal diffusion observed in the
paradigmatic Lorentz gas with hard scatterers is not ro-
bust when softening them: Instead, the type of diffusion
immediately changes dramatically generating an entirely
different diffusion coefficient. This raises doubts about a
universal applicability of the standard Lorentz gas for de-
scribing transport in realistic systems. In the soft Lorentz
gas the diffusion coefficient turns out to be a highly irreg-
ular function under variation of control parameters with
regions exhibiting superdiffusion. This is explained in
terms of periodic orbits that are topologically unstable
under parameter variation while exhibiting very regular
structures in parameter space. Analogous results hold for
varying the energy E as a parameter [68], which experi-
mentally corresponds to changing the temperature of the
system. Note that in superdiffusive parameter regions er-
godicity is broken, hence for single particle experiments
there will be a dependence on initial conditions [54, 55].
In real systems with thermal noise we expect these su-
perdiffusive regions, ergodicity breaking and irregulari-
ties on fine scales to disappear, however, larger irregu-
larities should persist under noise [56, 71]. Our results
motivate to construct a more rigorous theory for calcu-
lating the diffusion coefficient curve in Fig. 2 from first
principles, possibly based on generating partitions [72],
which will be an extremely difficult task [9, 63]. A second
crucial challenge is to test for the diffusion coefficient of
Fig. 2 in experiments.
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