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The region of heavy calcium isotopes forms the frontier of experimental and theoretical nuclear
structure research where the basic concepts of nuclear physics are put to stringent test. The recent
discovery of the extremely neutron-rich nuclei around 60Ca [1] and the experimental determination of
masses for 55−57Ca [2] provide unique information about the binding energy surface in this region. To
assess the impact of these experimental discoveries on the nuclear landscape’s extent, we use global
mass models and statistical machine learning to make predictions, with quantified levels of certainty,
for bound nuclides between Si and Ti. Using a Bayesian model averaging analysis based on Gaussian-
process-based extrapolations we introduce the posterior probability pex for each nucleus to be bound
to neutron emission. We find that extrapolations for drip-line locations, at which the nuclear binding
ends, are consistent across the global mass models used, in spite of significant variations between
their raw predictions. In particular, considering the current experimental information and current
global mass models, we predict that 68Ca has an average posterior probability pex ≈ 76% to be
bound to two-neutron emission while the nucleus 61Ca is likely to decay by emitting a neutron
(pex ≈ 46%).

Introduction – How many protons and neutrons can
form a bound atomic nucleus? Out of about 3,200 iso-
topes known [3] only 286 primordial nuclides have ex-
isted in their current form since before Earth was formed.
They form the valley of stability on the nuclear land-
scape. Moving away from the region of stable isotopes
by adding neutrons or protons, one enters the regime of
short-lived radioactive nuclei, which are beta unstable.
Nuclear existence ends at the “drip lines”, where the
last nucleons are no longer attached to the nucleus by
the strong interaction and drip off. According to current
theoretical estimates [4, 5] the number of bound nuclides
with atomic number Z between 2 and 120 is around 7,000.

The particle stability of a nuclide is determined by its
separation energy, i.e., the energy required to remove
from it a single nucleon or a pair of like nucleons. If
the separation energy is positive, the nucleus is bound
to nucleon decay; if the separation energy is negative,
the nucleus is particle-unstable. In this Letter, we study
the one-neutron (S1n) and two-neutron (S2n) separation
energies of neutron-rich nuclei. The drip line is reached
when the separation energy reaches zero; hence, one can
talk about the one-neutron drip line when S1n = 0 and
the two-neutron drip line when S2n = 0. Very weakly
bound, or unbound, nuclei that lie in the immediate
vicinity of drip lines are referred to as threshold sys-
tems. The separation energies and drip-line positions
are strongly affected by nucleonic pairing, or nuclear su-
perfluidity [6]. Since it costs energy to break a nucle-
onic pair, nuclei with even numbers of nucleons are more
bound than their odd-nucleon-number neighbors. As a

result, the one-nucleon drip line is reached earlier than
the two-nucleon drip line, which results in a highly irreg-
ular pattern of nuclear existence that meanders between
odd- and even-particle systems.

The territory of neutron-rich nuclei is arguably the
most fertile ground for breakthroughs in nuclear struc-
ture research and the Ca region is of particular interest.
The heaviest Ca isotope discovered to-date is 60Ca [1].
This nucleus, having Z = 20 protons and N = 40 neu-
trons, i.e., containing 12 more neutrons than the heaviest
stable calcium isotope, was found recently together with
seven other neutron-rich nuclei: 47P, 49S, 52Cl, 54Ar, 57K,
59Ca, and 62Sc. In addition, one event consistent with
59K was registered [1]. This discovery extends the range
of known nuclei in this region, previously established in
Refs. [7, 8]. In separate experimental studies, the atomic
masses of 55−57Ca were determined [2] and the uncertain-
ties of the 52−55Ti mass values were significantly reduced
[9].

The Ca region is arguably the most critical one to look
at from a theory perspective, because it provides an ex-
citing opportunity to bridge the refined methods based
on realistic interactions, in which all A nucleons are con-
sidered as elementary degrees of freedom, with nuclear
density functional theory (DFT) employing energy den-
sity functionals (EDFs) expressed in terms of proton and
neutron local densities and currents. During recent years,
the A-body approaches reached selected medium-mass
nuclei and provided predictions for their global proper-
ties and spectroscopy [10, 11]. Nuclear DFT offers a more
coarse-grained picture of nuclei than A-body approaches,
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but can be applied globally across the nuclear chart from
light to superheavy nuclides [4, 5]. The associated EDFs
are primarily constrained by global nuclear properties
such as binding energies and radii [12]. By considering
symmetry-breaking effects, nuclear DFT can describe on
the same footing spherical nuclei close to magic shells
and deformed open-shell systems. A well-controlled link
between A-body methods and DFT is essential if one
aims to understand nuclei and nucleonic matter from a
bottom-up perspective [13, 14].

When it comes to the Ca chain itself, A-body meth-
ods provide an excellent description of binding energies,
charge radii, and spectroscopy up to 54Ca, depending
on the interaction used [15–22]. Likewise, DFT ap-
proaches with globally-optimized EDFs reproduce mea-
sured global properties. However, there is no consen-
sus when it comes to extrapolations towards the neu-
tron drip line. Namely, A-body methods with two- and
three-body interactions predict the two-neutron drip-line
around 60Ca[22, 23] while the DFT approaches locate it
around 70Ca[4, 13].

In this Letter, we investigate what global nuclear mass
models, aided by Bayesian machine learning, can tell us
about the topography of the mass surface and neutron
drip-lines in the Ca region. Our methodology roughly fol-
lows the recent paper [24]. Since Bayesian machine learn-
ing requires a sufficient number of data points in order to
make extrapolations with reasonable certainty, one must
work with models which are mostly global. To this end,
we consider global models based on nuclear DFT with
realistic Skyrme EDFs as well as the more phenomeno-
logical mass models FRDM-2012 and HFB-24 rooted in
the mean-field theory.

Density functional theory calculations – We used the
DFT mass predictions based on SkM∗ [25], SkP [26],
SLy4 [27], SV-min [28], UNEDF0 [29], and UNEDF1 [30]
EDFs stored in the theoretical database MassExplorer
[31]. The UNEDF2 [32] mass table has been computed
exactly in the same way as in Ref. [4]. The DFT pre-
dictions are compared to the results of the global mass
models FRDM-2012 [33] and HFB-24 [34].

DFT calculations were carried out for even-even nuclei
as we want to avoid additional complications and un-
certainties related to the choice and treatment of quasi-
particle configurations in odd-A and odd-odd systems
[35–37]. Binding energies of odd-A and odd-odd nuclei
were obtained from the binding energy values and aver-
age pairing gaps computed for even-even neighbors. The
associated error on S1n is expected to be 200-300 keV
[36]. For completeness, in our analysis we also consid-
ered even-even nuclei predicted to lie just beyond the
two-neutron drip line, i.e., those with a slightly positive
neutron chemical potential. Those results should be con-
sidered as rough estimates as the HFB theory does not

guarantee that the nucleonic densities and fields are lo-
calized in this regime [26, 38].

Statistical analysis – We first compute the so-
called separation energy residuals, i.e., the differences
δ1n/2n(Z,N) := Sexp

1n/2n(Z,N) − Sth
1n/2n(Z,N), between

experimental values and model predictions of S1n/2n,
based on the training datasets AME2003 [39] and
AME2016* consisting of AME2016 masses [40] supple-
mented by the recently updated 52−55Ti masses [9] (the
subscripts 1n/2n are used to indicate either one-neutron
or two-neutron separation energies). Using the values
of δ1n/2n(Z,N) for those training nuclei (Z,N), we con-
struct emulators δstat1n/2n(Z,N) using a Bayesian machine
learning analysis of extrapolations via Gaussian processes
(GP) following the methodology previously developed in
Ref. [24]. Our likelihood, the GP model, is a popular
way [41] of interpolating or extrapolating quantities from
neighboring ones. It is strongly based on the assumption
of a local spatial structure in the data, and contains re-
quired uncertainty modeling. We took the GP model
in a form of a mean-zero Gaussian random field with a
quadratic exponential spatial covariance kernel [42] fea-
turing three parameters: its scale η, which represents a
noise intensity, and two characteristic spatial lengths ρ:
one in the proton direction and one in the neutron direc-
tion; see Supplemental Material (SM) [43] for details. We
performed the statistical analysis independently on the
sets of S1n and S2n, respectively for odd-N and even-N
nuclei, and independently for odd-Z and even-Z nuclei.

Posterior samples are obtained via 100,000 iterations
of the Metropolis [44] algorithm, from which the poste-
rior mean value provides our predictions while Bayesian
credibility intervals (CIs) are built using the correspond-
ing posterior quantiles, symmetric around the mean, at
all uncertainty levels. We also evaluate the performance
of the prediction via a comparison of the rms deviation
before and after statistical refinement. It is worth not-
ing that our statistical CI estimates take into account all
possible sources of uncertainty including statistical, nu-
merical, and systematic uncertainty, including model ap-
proximations and modeling uncertainty within the DFT
framework.

The unknown separation energies are predicted sta-
tistically by combining the theoretical predictions and
the credibility intervals for the estimated residuals. For
instance, the estimated prediction at (Z,N) for the
one-neutron (resp. two-neutron) separation energy is
Sest
1n/2n(Z,N) = Sth

1n/2n(Z,N, ) + δstat1n/2n(Z,N) where the
last term is the Bayesian posterior mean prediction for
the residual. A similar strategy of correcting model pre-
dictions outside the training domain by estimated resid-
uals has recently been applied in Ref. [45]. (Applications
of statistical methods to mass predictions have been de-
scribed in several papers [46–53], primarily in the context
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of interpolations.) The new aspect of our work lies in that
we apply the Bayesian method to provide a full quantifi-
cation of the uncertainty surrounding the point estimate.
For more details we refer the reader to SM.
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FIG. 1. One-neutron separation energy for 55,57Ca (left)
and two-neutron separation energy for 56Ca (right) calcu-
lated with the nine global mass models with statistical correc-
tion obtained with GP trained on the AME2003 (GP+2003)
and AME2016* datasets. The recent data from Ref. [2]
(RIKEN2018) and the extrapolated AME2016 values [40] are
marked. The shaded regions are one-sigma error bars from
Ref.[2]; error bars on theoretical results are one-sigma credi-
ble intervals computed with GP extrapolation.

Results – GP’s superior predictive power was assessed
in Ref. [24] for the S2n of even-even nuclei. The present
work achieves comparable performances for odd-Z nuclei
and for S1n values, with prediction improvements ranging
from 20 % to 40 % for most models (see SM). To further
assess the performance of our approach, we apply it to
the recently measured masses of 55−57Ca [2]. As seen in
Fig. 1, the predicted S1n values for 55,57Ca are consistent
with experiment for most models while the S2n of 56Ca is
slightly overestimated. The impact of newer mass mea-
surements beyond AME2003 on our predictions is minor;
this is because very few datapoints that can impact our
local GP model were added in the Ca region. The large
deviation in the S1n of 55Ca in HFB-24 is noteworthy.
As illustrated in SM and Ref. [24], neutron separation
energies predicted by this model often exhibit irregular
behavior.

Figure 2 shows extrapolated separation energies for the
Ca isotopic chain for three global mass models corrected
with the GP emulator. (Here and in the following we
shall use the notation “model+GP” (e.g., UNEDF0+GP)
to emphasize that the statistical corrections are done
with the GP emulator.) The models are consistent overall
once the statistical correction and uncertainty are taken
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FIG. 2. Extrapolations of S1n and S2n for the Ca chain cor-
rected with GP and one-sigma CIs, combined for three repre-
sentative models. The solid lines show the average prediction
while the shaded bands give one-sigma CIs. The insert shows
the posterior probability of existence for the Ca chain. The
pex = 0.5 limit is marked by a dotted line. For the Ti-chain
plot, see SM [43].

into account. According to the computed empirical cov-
erage probabilities [54, 55], our credibility intervals are
slightly conservative for large credibility levels (see Sec.
I.C of SM for more discussion).

For a given isotopic chain and nuclear model, one ob-
tains an upper bound on the location of the first isotope
at which the binding energy becomes negative, depend-
ing on the choice of credibility level. For instance, the
posterior mean values (full lines) of the UNEDF0+GP
model place the 2n drip line for Ca around N = 54,
while considering the lower bound of the one-sigma cred-
ibility intervals provides that it is placed beyond N = 46
with probability 84%. This very wide interval suggests
that the posterior distribution of the separation ener-
gies is perhaps not the most appropriate quantity to
consider. To this end, for each model, we consider the
probability pex(Z,N) of the predicted separation energy
S∗
1n/2n(Z,N) to be positive under the posterior probabil-

ity distribution conditioned on the experimental masses
available. In the Bayesian paradigm, this probability is
pex(Z,N) := p(S∗

1n/2n(Z,N) > 0|S1n/2n). The insert in
Fig. 2 shows pex for the Ca chain. The model-averaged
existence probabilities for the Ca region are shown in
Fig. 3(a) assuming uniform prior weights. (For the val-
ues of pex for individual models, see Sec. III.C of SM.) As
noticed in Ref.[1], the N = 35 isotones 52Cl and 53Ar, as
well as 49S represent a challenge for nuclear mass mod-
els. Our results in Fig. 3(a) confirm this finding through
the low calculated prior-average pex values for these nu-
clei. Indeed, with the exception of SV-min, UNEDF0,
and FRDM-2012, other models calculate them to be ei-
ther marginally bound or to lie outside the one-neutron
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FIG. 3. Posterior probability of existence of neutron-rich nuclei in the Ca region averaged over all models. Top: uniform
model averaging. Bottom: averaging using posterior weights (1) constrained by the existence of 52Cl, 53Ar, and 49S. The range
of nuclei with experimentally-known masses is marked by a yellow line. The red line marks the limit of nuclei that have been
experimentally observed. The estimated drip line that separates the pex > 0.5 and pex < 0.5 regions is indicated by a blue line.

drip line. Since 49S, 52Cl and 53Ar do exist [1, 7], this
prior knowledge can inform the model averaging process
[56–58] through posterior weights:

wk := p
(
Mk|52Cl, 53Ar, 49S exist

)
(1)

(see additional discussion in SM). The weight wk reflects
the ability of the model Mk to predict the existence of
nuclei in the Ca region. In this respect UNEDF0+GP
is superior, see Table S1 in SM. We emphasize that con-
ditioning with respect to these three nuclei corresponds
actually to conditioning over the observed nuclei in the
whole Ca region, since other experimentally-observed iso-
topes are predicted to be bound by the global models
considered. The values of pex obtained in this way are
shown in Fig. 3(b).

As shown in Figs. 2 and 3, the nucleus 68Ca is expected
to be bound. However, as seen in Fig. 2, S2n approaches
zero very gradually; this results in a spread of predictions
of individual models. According to the average pex, 61Ca
and 71Ti are expected to be 1n-unstable while the 2n
drip line extends all the way to 72Ca and 78Ti. The nu-
cleus 59K – for which one event was registered in Ref. [1]
– is expected to be firmly neutron-bound. By compar-
ing Figs. 3(a) and (b) one can immediately assess the

impact of the discovery of 52Cl, 53Ar, and 49S on drip-
line predictions: the 2n drip line obtained with posterior
weights generally extends by two neutron numbers for
odd-Z chains.

Conclusions – In summary, in this Letter we quantified
the neutron-stability of the nucleus in terms of its exis-
tence probability pex, i.e., the Bayesian posterior prob-
ability that the neutron separation energy is positive.
Our results are fairly consistent with recent experimen-
tal findings [1]: 60Ca is expected to be well bound with
S2n ≈ 5 MeV while 49S, 52Cl, and 53Ar are marginally-
bound threshold systems.

We emphasize that the nuclear model itself is not ca-
pable of gauging the likelihood of existence. To overcome
this problem, we introduce a machine learning algorithm,
with a stochastic exploration part and a deterministic
modeling part, which, when combined, result in Bayesian
statistical machine learning. One could say this is super-
vised learning, with the nuclear modeling and the choice
of priors representing two aspects of the supervision.

The Bayesian model averaging employed in this Letter
is based on global DFT/mean-field models. Therefore
the computed probabilities of existence are conditional on
the correctness of the DFT framework. Currently, many
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A-body methods based on realistic inter-nucleon interac-
tions calculate the two-neutron drip line at 60Ca. Since
Bayesian machine learning requires a sufficient number
of data points to extrapolate with reasonable certainty,
A-body models are not yet amenable to statistical anal-
ysis as the corresponding global mass tables are difficult
to compute. It will be extremely valuable to apply a
Bayesian uncertainty quantification analysis to A-body
mass tables when those become available.

The extrapolation outcomes discussed in this Letter
will be tested by experimental data from rare-isotope
facilities. New mass measurements on neutron-rich nu-
clei will help to develop increasingly more quantita-
tive models of the atomic nucleus and also allow for a
higher-fidelity statistical analysis. As illuminated by our
Bayesian analysis of 49S, 52Cl, and 53Ar, experimental
discoveries of new nuclides will also be crucial for delin-
eating the detailed behavior of the nuclear mass surface,
including the placement of particle drip lines.
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