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We present two quantum algorithms based on evolution randomization, a simple variant of adi-
abatic quantum computing, to prepare a quantum state |x〉 that is proportional to the solution of

the system of linear equations A~x = ~b. The time complexities of our algorithms are O(κ2 log(κ)/ε)
and O(κ log(κ)/ε), where κ is the condition number of A and ε is the precision. Both algorithms are
constructed using families of Hamiltonians that are linear combinations of products of A, the pro-
jector onto the initial state |b〉, and single-qubit Pauli operators. The algorithms are conceptually
simple and easy to implement. They are not obtained from equivalences between the gate model
and adiabatic quantum computing. They do not use phase estimation or variable-time amplitude
amplification, and do not require large ancillary systems. We discuss a gate-based implementation
via Hamiltonian simulation and prove that our second algorithm is almost optimal in terms of κ.
Like previous methods, our techniques yield an exponential quantum speedup under some assump-
tions. Our results emphasize the role of Hamiltonian-based models of quantum computing for the
discovery of important algorithms.

PACS numbers: 03.67.Ac, 03.67.Lx, 03.65.Xp, 89.70.Eg

Introduction. Recently, there has been significant
interest in quantum algorithms to solve various linear
algebra problems [1–5], as quantum computers can im-
plement certain linear transformations more efficiently
than their classical counterparts. Such algorithms may
find applications in a wide range of topics, including ma-
chine learning [6–8], graph problems [9], solving differ-
ential equations [10], and physics problems [11, 12]. A
main example is the algorithm of Harrow, Hassidim, and
Lloyd (HHL) of Ref. [1] for the so-called quantum linear
systems problem (QLSP), where the goal is to prepare
a quantum state |x〉 that is proportional to the solution

of a system of linear equations A~x = ~b. If the N × N
matrix A and N -dimensional vector ~b are sparse, and for
constant precision, the complexity of the algorithm in
Ref. [1] is polynomial in logN and κ, where κ is the con-
dition number of A. In contrast, classical algorithms to
invert matrices are of complexity polynomial in N , sug-
gesting that quantum computers would be able to solve
certain problems related to systems of linear equations
exponentially faster than classical computers. Improve-
ments of the HHL algorithm can be found in Refs. [3–5].

The referenced algorithms are described in the stan-
dard gate-based model of quantum computing, where
quantum states are prepared by applying a sequence of
elementary (e.g., two-qubit) gates to some initial state.
However, Hamiltonian-based alternatives to the gate-
based model exist, such as adiabatic quantum computing
(AQC) [13]. One advantage of considering these other
alternatives is that new and simple quantum algorithms
can be found, even if such algorithms will ultimately be

implemented using a different but equivalent model.

In AQC, for example, the computation is performed by
smoothly changing the parameters of a Hamiltonian that
evolves a quantum system. The adiabatic theorem as-
serts that if the continuously related eigenstates remain
non-degenerate and the Hamiltonians change sufficiently
slowly, then the evolved state is sufficiently close to the
eigenstate of the final Hamiltonian [14]. Such an eigen-
state encodes information about the solution to a prob-
lem; in our case the final eigenstate would be |x〉 (or
|φ〉⊗|x〉 if ancillas are used). A closely related method is
the randomization method (RM) described in Ref. [15].
Both, AQC and RM are examples of eigenpath traver-
sal [16]. Nevertheless, an advantage of the RM with re-
spect to AQC is that better convergence guarantees can
sometimes be obtained, as shown in Refs. [17, 18].

In this paper, we develop two simple quantum algo-
rithms that solve the QLSP based on the RM. To this
end, we construct families of Hamiltonians whose con-
tinuously related eigenstates connect |b〉, the quantum

state proportional to ~b, with |x〉. The average evolution
times of our algorithms, i.e. the time complexities, are
nearly order κ2 and κ, respectively. Here κ is the con-
dition number of A. Additionally, the time complexities
of both algorithms are linear in 1/ε, where ε is a pre-
cision parameter. In contrast to previous approaches,
our algorithms do not use any form of phase estimation,
amplitude amplification, or function approximation, thus
reducing the number of ancillary qubits significantly.

Our first quantum algorithm solves the QLSP by
preparing the lowest-energy states of a family of Hamil-
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tonians, whereas our second algorithm achieves this by
preparing energy states that lie exactly at the middle of
the spectrum, i.e., excited states. Our second algorithm
is noteworthy in that it is almost optimal, having time
complexity almost linear in κ.

The Hamiltonians involved in our algorithms are easily
described in terms of the inputs of the problem. They
may not correspond to a physical model and actual im-
plementations of our algorithms on analog quantum com-
puting devices may be impractical. However, the quan-
tum algorithms could still be efficiently implemented in
the gate-based model by using the Hamiltonian simula-
tion results of Refs. [19–21]. This will require oracle ac-
cess to the matrix A as well as a procedure to prepare the
state |b〉. A resulting gate-model algorithm for the QLSP
following this procedure will be nearly optimal according
to Ref. [1]. That is, like Refs. [3, 4], the query complexity
is almost linear in κ, a quadratic improvement over that
of the HHL algorithm. We give more specifics below.

Quantum linear systems problem. The QLSP in
Refs. [1, 3, 4] is stated as follows. We are given an N×N
Hermitian matrix A and a vector ~b = (b1, . . . , bN )T , with
N = 2n. The goal is to prepare an ε-approximation of a
quantum state

|x〉 :=

∑N
j=1 xj |j〉√∑N
j=1 |xj |2

=
(1/A) |b〉
‖(1/A) |b〉 ‖

, (1)

where ~x = (x1, . . . , xN )T is the solution to the linear

system A~x = ~b, |b〉 ∝
∑N

j=1 bj |j〉, and 0 < ε < 1 is
a precision parameter. We assume that A is invertible,
having condition number κ < ∞, and ‖A‖ ≤ 1. The
approximated state |x̃〉 satisfies ‖ |x̃〉 − |x〉 ‖ ≤ ε. Here,
we consider a slightly modified version of this problem
where the goal is to prepare a mixed state ρx such that
the trace distance satisfies

1

2
Tr |ρx − |x〉〈x|| ≤ ε . (2)

Note that this modified version is adequate since the ul-
timate purpose of the QLSP is for obtaining expectation
values of observables. Thus, both |x̃〉 and ρx will provide
same-order approximations for such calculations.

Algorithm evolving on ground states. We first
define the family of Hamiltonians

H(s) := A(s)P⊥b̄ A(s) . (3)

Here, A(s) := (1 − s)Z ⊗ 1l + sX ⊗ A, |b̄〉 := |+, b〉,
P⊥
b̄

:= 1l − |b̄〉〈b̄|, and s ∈ [0, 1] is a parameter. X and
Z are single-qubit Pauli operators. These Hamiltonians
act on a Hilbert space of dimension 2N , i.e., the space
of A plus one ancilla qubit. The reason for using an
ancilla is to guarantee that A(s) is invertible for all s.

We introduce the family of states

|x(s)〉 :=
1/(A(s))

∣∣b̄〉
‖1/(A(s))

∣∣b̄〉 ‖ , (4)

which satisfy H(s) |x(s)〉 = 0. In Supp. Mat. we show
that |x(s)〉 is the unique ground state of H(s) and the
energy gap satisfies ∆(s) ≥ ∆∗(s) := (1 − s)2 + (s/κ)2.
As s is increased from 0 to 1, the ground state contin-
uously changes from |x(0)〉 = |−, b〉 to |x(1)〉 = |+, x〉.
Exact preparation of |x(1)〉 implies exact preparation of
the target state |x〉 by discarding the ancillary qubit.

In the case A > 0, we can opt for the simpler choice
A(s) := (1 − s)1l + sA, and still have A(s) non-singular
for all s. Then, |x(s)〉 ∝ A(s)−1 |b〉 is the unique ground
state of H(s). The following analysis is for general A.

Randomization method. The details of the RM as
well as its complexity analysis can be found in Ref. [15].
Here, we mainly study and describe how to use the RM
to solve the QLSP. Roughly, the method can be viewed
as a version of AQC, where the parameter s is changed
discretely rather than continuously, and the Hamiltonian
evolution is for a random time. This process effectively
simulates an approximate projective measurement of the
desired ground state (or any other eigenstate). It then
allows to make transformations within the ground states
(eigenstates) of the Hamiltonians. The time complexity
of the RM in general is O(L2/(ε∆)), where L is the so-
called path length (which we define later), and ∆ is the
minimum gap of the Hamiltonians. We observe that the
dependence on ∆ is optimal [18], while general bounds for
AQC provide a worse time complexity of O(1/∆3) [22].
This observation is key to achieve our results. Then,
obtaining the actual time complexity for the QLSP re-
quires studying the properties of the Hamiltonians H(s)
and eigenstates |x(s)〉. With this information, we can
find discrete values of s as well as values for the evolu-
tion times needed to implement the RM.

The full complexity analysis for the QLSP is given in
Supp. Mat.. According to Refs. [15, 16, 18], to obtain
the discrete values of s, it is convenient to work with a
“natural” parametrization s(v). This is defined so that
the norm of the rate of change of the eigenstate with
respect to v can be bounded by a constant. We find that
a natural parametrization for this case is

s(v) :=
e
v

√
1+κ2√
2κ + 2κ2 − κ2e

−v
√

1+κ2√
2κ

2(1 + κ2)
. (5)

Here, va ≤ v ≤ vb, with

va :=

√
2κ√

1 + κ2
log(κ

√
1 + κ2 − κ2) , (6)

vb :=

√
2κ√

1 + κ2
log(

√
1 + κ2 + 1) . (7)



3

The discrete values sj = s(vj) are obtained from dis-
crete values of v, which are evenly distributed in q points
as va < v1 < v2 < . . . < vq = vb. Here, vj = va + jδ
(j = 1, . . . , q) and s0 = s(va) = 0, sq = s(vb) = 1.
The number of steps of the RM is q = Θ(log2(κ)/ε), and
δ = (vb − va)/q. The choice of q implies

1− |〈x(sj)|x(sj+1)〉|2 = O(ε/q) . (8)

That is, a sequence of q projective measurements of
|x(sj)〉, starting from |x(0)〉, will produce |x(1)〉 with
probability 1−O(ε). These measurements are simulated
by evolution randomization.

Our algorithm is as follows. At each step j = 1, . . . , q,
we evolve with the Hamiltonian H(sj) for a random time
tj . The evolution time can be sampled from the uni-
form distribution tj ∈ [0, 2π/∆∗(sj)] [15, 18] and sat-
isfies 〈tj〉 = π/(∆∗(sj)). The time complexity of this
algorithm is T :=

∑q
j=1〈tj〉 and in Supp. Mat. we show

T = O
(
κ2 log(κ)/ε

)
. (9)

Note that, in each run, the overall evolution time is al-
ways bounded by 2T .

Our first algorithm then uses the RM to prepare a
mixed state ρx that satisfies Eq. (2), after discarding the
ancilla. The time complexity is almost quadratic in κ.
The pseudocode for the algorithm is shown below.

Algorithm

Given condition number κ and precision ε:

– Compute va and vb. Set q=Θ(log2(κ)/ε), δ=(vb−va)/q

– For j = 1, . . . , q, let vj = va+jδ, sj = s(vj), and tj be

sampled from the uniform distribution
[
0, 2π/∆∗(sj)

]
– Apply e−it

qH(sq) . . . e−it
1H(s1) to |b̄〉, discard the ancilla

Spectral gap amplification. One way to improve
the time complexity of the first algorithm is by consid-
ering other families of Hamiltonians where the relevant
spectral gap is larger than that of H(s). This idea was
considered in Ref. [23] and resulted in various polyno-
mial quantum speedups for quantum state preparation.
A quadratic spectral gap amplification is indeed possible
when the Hamiltonians satisfy a so-called frustration free
property. Very roughly, a possible Hamiltonian with an
amplified gap can be interpreted as the square root of the
frustration-free Hamiltonian. A zero eigenvalue remains
zero and an eigenvalue λ > 0 is transformed into eigen-
values ±

√
λ. (
√
λ � λ if λ � 1.) To avoid additional

complexity overheads, the Hamiltonians with an ampli-
fied gap must satisfy certain constrains related to the
difficulty of their simulation. We refer to [23] for details.

Motivated by these results, we now consider another
family of Hamiltonians for solving the QLSP using the

RM. This family is given by

H ′(s) := σ+ ⊗A(s)P⊥b̄ + σ− ⊗ P⊥b̄ A(s) , (10)

where σ± = (X ± iY )/2 are single-qubit (raising and
lowering) operators, and s ∈ [0, 1]. We note that H ′(s)
acts on a Hilbert space of dimension 4N . Then

(H ′(s))
2

=

(
H(s) 0

0 P⊥
b̄

(A(s))2P⊥
b̄

)
, (11)

where each block of the matrix is of dimension 2N ×2N .
Using B(s) := A(s)P⊥

b̄
, the blocks on the diagonal of

Eq. (11) can be written as B(s)†B(s) and B(s)B(s)†, and
thus have the same spectrum. Consequently, the eigen-
values of H ′(s) are {0, 0,±

√
γ1(s), . . . ,±

√
γ2N−1(s)},

where γj(s) > 0 are the nonzero eigenvalues of H(s).
The subspace of H ′(s) of eigenvalue zero is spanned by
{|0〉 ⊗ |x(s)〉, |1〉 ⊗ |b̄〉}.

In contrast to the first algorithm that aimed at prepar-
ing the ground state of H(s), we now aim at preparing
one of the two eigenstates of zero eigenvalue of H ′(s) that
lies exactly at the middle of the spectrum. Nevertheless,
the RM can be used to prepare any eigenstate as long as
it is separated by a nonzero spectral gap from the other
eigenstates. One may wonder if the double degeneracy
is a problem for this case. The answer is negative as the
Hamiltonian does not allow for transitions between the
two eigenstates, that is, 〈0| ⊗ 〈x(s)|H ′(s′) |1〉 ⊗ |b̄〉 = 0.
If we initialize our quantum computer in |0〉 ⊗ |x(0)〉, a
sequence of perfect projective measurements of the eigen-
states of H ′(s) at sufficiently close points will allow us to
prepare |0〉⊗|x(1)〉 with sufficiently high probability. The
relevant spectral gap is now bounded by

√
∆∗(s) > 0.

The eigenstate |0〉 ⊗ |x(s)〉 has similar properties as
|x(s)〉: the path length and norm of the rate of change
are the same. Then, our second algorithm can be con-
structed by using the same discretization points sj that
were used for the first algorithm. At each step, we now
need to evolve with the Hamiltonian H ′(sj) for a random
time tj . This time can be sampled from the uniform dis-
tribution tj ∈ [0, 2π/

√
∆∗(sj)]. The time complexity of

this algorithm is T :=
∑q

j=1〈tj〉 and, in Supp. Mat., we
show

T = O (κ log(κ)/ε) . (12)

After discarding the two ancilla qubits, the final state
is ρx and satisfies Eq. (2). The time complexity of our
second algorithm is then almost linear in κ. The pseu-
docode for this algorithm follows from the previous one
by replacing ∆∗(sj) with

√
∆∗(sj), H(s) with H ′(s), and

|b̄〉 with |0〉 ⊗ |b̄〉, in the second and third lines.
Simulation results. We tested the validity of our

quantum algorithms by performing numerical simula-
tions. For this purpose, we randomly generated Hermi-
tian matrices A of dimension N = 16 that are 4-sparse
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and N = 32 that are 5-sparse, both satisfying ‖A‖ = 1.
The generated matrices result in a range of values for
the condition number κ. We post-selected matrices for
which κ ≈ 10 and κ ≈ 50 (to within absolute error 10−3),
for N = 16 and N = 32 respectively. Similarly, we ran-
domly generated 4-sparse and 5-sparse vectors for ~b. The
parameters sj and tj were chosen according to the pre-
vious discussion and depend on κ and ε (or q). In each
execution, we prepare a pure quantum state that is not
guaranteed to be ε-close to the pure eigenstate of the
final Hamiltonian. However, the expected error of the
prepared pure states from many repeated executions of
the algorithms is indeed bounded by ε.

We ran simulations for which the number of repetitions
of our algorithms were nrep = 50 and nrep = 200, respec-
tively. For each case, we first construct a finite-sampling
density matrix (1/nrep)

∑nrep
i=1 |ψi〉〈ψi|. Here, |ψi〉 is the

pure state output at the i’th repetition. Tracing out the
ancilla qubits, we get a density matrix ρ̃x that describes
the state of the system only. Note that ρ̃x is, in general,
slightly different from ρx of Eq. (2). However, ρ̃x → ρx
in the limit of nrep → ∞. The error computed in our
numerical simulations is then the trace distance between
ρ̃x and |x〉〈x|.

In Fig. 1, we show the dependence of the inverse of
the error on the number of steps q. While the results
are for two particular matrices A with κ ≈ 10 and κ ≈
50, other matrices show similar results. We observe that
the inverse of the error for the two quantum algorithms,
denoted by εQ and εL respectively, scales almost linearly
with q. The dispersion around the linear fit is smaller for
larger nrep. The results are then in accordance with our
theoretical analysis.

Gate-based implementations. Our algorithms are
based on Hamiltonian evolutions and can be implemented
on a gate-based quantum computer using a Hamiltonian
simulation method. We focus on the method of Ref. [20],
which implements the truncated Taylor series of the evo-
lution operator. It requires the Hamiltonian to be given
as a linear combination

∑
l αlVl, where the Vl are uni-

taries that are easy to apply and αl > 0. The Vl are
applied Õ(τ) times, where τ is the product of the evolu-
tion time and

∑
l αl. The Õ notation hides logarithmic

factors in τ .
Our second algorithm applies the evolution under

H ′(sj) for time tj . The main challenge is then to find
a decomposition of the Hamiltonian in terms of uni-
taries. For technical reasons, we consider another Hamil-
tonian H̃ ′(sj), but whose evolution operator mimics that
of H ′(sj). This Hamiltonian is discussed in Supp. Mat..

It turns out that H̃ ′(s) = d+1
16

∑32
l=1 Vl(s), where Vl(s)

are unitaries. As previous approaches for the QLSP [4],
we assume access to a quantum oracle OA for the matrix
A. This oracle outputs the nonzero matrix elements and
their indices, for any row of A. We also assume access to
a (controlled) unitary Ub that prepares the state |b〉 and
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200
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FIG. 1. The inverse of the error for the two quantum algo-
rithms as a function of q, the number of steps in the RM.
Subscript Q refers to the quantum algorithm with complexity
that is almost quadratic in κ and L to the quantum algo-
rithm with complexity almost linear in κ. nrep is the number
of repetitions of the of our algorithm. The results are for two
randomly generated matrices A with N = 16, κ ≈ 10, and
N = 32, κ ≈ 50.

the (controlled) U†b , as in Refs. [1, 3, 4]. Each unitary
Vl(s) can be applied using, at most, a constant number

of OA and (controlled) Ub and U†b . In addition, it may
require O(n) two-qubit gates – see Supp. Mat..

In our construction, we have τ = O(tjd) if the evolu-
tion time is tj . Since our algorithm implements evolu-
tions with q Hamiltonians, the total number of uses of
OA and (controlled) Ub and U†b , or query complexity, is

then Õ(Td), where T is the total evolution time. The
number of additional two-qubit gates is a multiplicative
factor of order n away from the query complexity.

Substituting T from Eq. (12) gives the query com-
plexity of our approach as Õ(κd/ε). In Ref. [1], it was
shown that quantum algorithms for the QLSP must have
a query complexity that is, at least, linear in κ. Then,
the gate-based implementation following Ref. [20] is al-
most optimal. Note that the query complexity of evolv-
ing with H̃ ′(s) is of the same order as that of evolving
directly with A, which is needed for the HHL algorithm.

Discussion. We presented simple quantum algo-
rithms for solving the QLSP that were motivated by
AQC and not the standard gate-based model. A nice
feature about AQC and related models, such as the RM
or general eigenpath traversal methods [16], is that the
time complexity is typically dominated by a single quan-
tity, i.e., the inverse of the minimum spectral gap of the
Hamiltonians. Then, the root of the quantum speedup
is more clear in this case than in the gate-based model,
allowing for algorithmic improvements by considering dif-
ferent Hamiltonians with larger spectral gaps. Another
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nice feature is that some problems are naturally reduced
to preparing the eigenstate of a Hamiltonian, and eigen-
path traversal methods are useful in that context. We
showed that this is the case for the QLSP. Our results
emphasize the importance of considering models of quan-
tum computing, which go beyond the gate-based model,
for discovering novel quantum algorithms – see Ref. [24]
for another example.

The further significance of our results is as follows.
Previous algorithms for the QLSP [1, 3, 4] use three main
subroutines: (i) Hamiltonian simulation, (ii) phase esti-
mation or function approximation, and (iii) some form
of amplitude amplification. The method of “variable-
time amplitude amplification” is used in Refs. [3, 4]
to achieve near-optimal complexity in terms of κ.
That method alone requires Ω(log(1/ε) log(κ/ε)/ε2) and
Ω(log(κ) log(κ/ε)) ancillary qubits, respectively, which
become excessively large for large κ. In contrast, our al-
gorithms use only Hamiltonian simulation (which has the
same query complexity as in previous methods) thereby
reducing the number of ancillary qubits significantly. Our
result additionally implies a significant reduction in the
number of conditional operations to solve the QLSP,
making our algorithms more attractive for implemen-
tations on quantum computers of smaller size. To this
point, our algorithm has already been used in Ref. [25] to
solve an 8-dimensional linear system on a 4-qubit NMR
device, the largest dimension up to date.

The time complexity of our methods is linear in 1/ε.
This complexity can be improved to polylogarithmic in
1/ε using the fast methods for eigenpath traversal of
Ref. [16]. These methods will provide a different way of
obtaining an exponential improvement in terms of preci-
sion with respect to the HHL algorithm, as in Ref. [4].
They, however, require repeated uses of phase estimation
and thus many additional ancillary qubits.

Last, it would be interesting to study if our results
can also impact classical methods for solving systems of
linear equations.
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