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Symmetries are ubiquitous in network systems and have profound impacts on the observable
dynamics. At the most fundamental level, many synchronization patterns are induced by underlying
network symmetry, and a high degree of symmetry is believed to enhance the stability of identical
synchronization. Yet, here we show that the synchronizability of almost any symmetry cluster in
a network of identical nodes can be enhanced precisely by breaking its structural symmetry. This
counterintuitive effect holds for generic node dynamics and arbitrary network structure and is,
moreover, robust against noise and imperfections typical of real systems, which we demonstrate by
implementing a state-of-the-art optoelectronic experiment. These results lead to new possibilities
for the topological control of synchronization patterns, which we substantiate by presenting an
algorithm that optimizes the structure of individual clusters under various constraints.

Symmetry and synchronization are interrelated con-
cepts in network systems. Synchronization, being a sym-
metric state among oscillators, has its existence and sta-
bility influenced by the symmetry of the network [1–
3]. For example, recent research has shown that net-
work symmetry can be systematically explored to iden-
tify stable synchronization patterns in complex networks
[4]. Different work has shown that structural homogene-
ity (and hence a higher degree of network symmetry)
usually enhances synchronization stability [5–7]. Any
given network of identical oscillators can always be parti-
tioned into so-called symmetry clusters [8], characterized
as clusters of oscillators that are identically coupled, both
within the cluster and to the rest of the network, mak-
ing them natural candidates for cluster synchronization
[4, 9]. Cluster synchronization has been investigated in
numerous experimental systems, including networks of
optoelectronic oscillators [4, 9, 10], semiconductor lasers
[11, 12], Boolean systems [13], neurons [14], slime molds
[15], and chemical oscillators [16]. Many of these ex-
periments explicitly investigated the beneficial impact of
network symmetries on cluster formation [4, 9, 15–17].
Taken together, previous results support the expectation
that oscillators that are indistinguishable on structural
grounds are also more likely to exhibit indistinguishable
(synchronous) dynamics.

In this Letter, we investigate the relation between sym-
metry and synchronization in the general context of clus-
ter synchronization. We show that, in order to induce
stable synchronization, one often has to break the under-
lying structural symmetry. This counterintuitive result
holds for the general class of networks of diffusively cou-
pled identical oscillators with a bounded and connected
stability region, and follows rigorously from our demon-
stration that almost all clusters exhibiting optimal syn-
chronizability are necessarily asymmetric. In particular,

the synchronizability of almost any symmetry cluster can
be enhanced precisely by breaking the internal structural
symmetry of the cluster. These findings add an impor-
tant new dimension to the recent discovery of parametric
asymmetry-induced synchronization [18–20], a scenario
in which the synchronization of identically coupled iden-
tical oscillators is enhanced by setting non-identical pa-
rameters to the oscillators. Here, we show that synchro-
nization of identically coupled identical oscillators is en-
hanced by changing the connection patterns of the oscil-
lators to be non-identical. We refer to this effect as struc-
tural asymmetry-induced synchronization (AISync). We
confirm that this behavior is robust against noise and can
be found in real systems by providing the first experimen-
tal demonstration of structural AISync using networks
of coupled optoelectronic oscillators. In excellent agree-
ment with theory, the experiments show unequivocally
that both intertwined and non-intertwined clusters can
be optimized by reducing structural symmetry.

We consider a network of n diffusively coupled identical
oscillators,

ẋi = f(xi)− σ
n∑

j=1

Lijh(xj), (1)

where xi is the state of the i-th oscillator, f is the vector
field governing the uncoupled dynamics of each oscillator,
L = {Lij} is the Laplacian matrix describing the struc-
ture of an arbitrary unweighed network, h is the inter-
action function, and σ > 0 is the coupling strength. We
are interested in the dynamics inside a symmetry clus-
ter. To facilitate presentation, we first assume that the
cluster is non-intertwined [4, 21]; that is, it can synchro-
nize independent of whether other clusters synchronize or
not. The general case of intertwined clusters—in which
desynchronization in one cluster can lead to loss of syn-
chrony in another cluster—requires considering the inter-



2

twined clusters concurrently, and this important case is
addressed below.

Numbering the oscillators in that cluster from 1 to m,
we obtain the dynamical equation for the cluster:

ẋi = f(xi)− σ
m∑
j=1

Lijh(xj) + σ

n∑
j=m+1

Aijh(xj)

= f(xi)− σ
m∑
j=1

Lijh(xj) + σI
(
{xj}j>m

)
,

(2)

where Lij = δijµi−Aij , A = {Aij} is the adjacency ma-
trix of the network, µi is the indegree of node i, and the
equation holds for 1 ≤ i ≤ m. Here, we denote the input
term from the rest of the network

∑n
j=m+1Aijh(xj) by

I
(
{xj}j>m

)
to emphasize that this term is independent

of i and hence equal for all oscillators 1, . . . ,m. This term
is zero, and m = n, only in the special case in which the
entire network consists of a single symmetry cluster.

For m < n, if we regard the cluster subnetwork con-
sisting of oscillators 1, . . . ,m as a separate network (by
ignoring its connections with other clusters), then the

corresponding m × m Laplacian matrix L̃ is closely re-
lated to the corresponding block of the n × n Laplacian
matrix L of the full network:

Lij =

{
L̃ij , 1 ≤ i 6= j ≤ m,
L̃ij + µ̃, 1 ≤ i = j ≤ m,

(3)

where µ̃ > 0 is the number of connections each oscillator
in the cluster receives from the rest of the network. It is
then clear that there are two differences in the dynam-
ical equation when the cluster subnetwork is part of a
larger network (i.e., as a symmetry cluster, described by
Eq. (2)) rather than as an isolated network. First, the

Laplacian matrix L̃ in the dynamical equation is replaced
by L̂ = {Lij}1≤i,j≤m = L̃+µ̃1m; that is, the diagonal en-
tries are uniformly increased by µ̃. Second, each oscillator
now receives a common input σI

(
{xj}j>m

)
produced by

its coupling with other clusters, which generally alters
the synchronization trajectory sI ≡ x1 = · · · = xm,
causing it to be typically different from the ones gener-
ated by the uncoupled dynamics ṡ = f(s). This has to
be accounted for in calculating the maximum Lyapunov
exponent transverse to the cluster synchronization mani-
fold to determine the stability of the cluster synchronous
state.

Despite these differences, a diagonalization procedure
similar to the one used in the master stability function
approach [22] can still be applied to the variational equa-
tion in order to assess the cluster’s synchronization sta-
bility. The variational equation describing the evolution
of the deviation away from sI inside the cluster can be
written as

δẊ =
(
1m ⊗ Jf(sI)− σL̂⊗ Jh(sI)

)
δX, (4)

where δX = (δxᵀ
1 , · · · , δxᵀ

m)ᵀ = (xᵀ
1−s

ᵀ
I , · · · ,xᵀ

m−s
ᵀ
I )ᵀ

and ⊗ denotes the Kronecker product. The rest of the
network does not enter the equation explicitly, other than
through its influence on the coupling matrix L̂ and the
synchronization trajectory sI . If L̂ is diagonalizable (as
for any undirected network), the decoupling of Eq. (4)
results in m independent d-dimensional equations corre-
sponding to individual perturbation modes:

η̇i =
[
Jf(sI)− σv̂iJh(sI)

]
ηi, (5)

where d is the dimension of node dynamics, J is the Jaco-
bian operator, η = (ηᵀ

1 , · · · ,ηᵀ
m)ᵀ is δX expressed in the

new coordinates that diagonalize L̂, and v̂i = ṽi + µ̃ are
the eigenvalues of L̂ in ascending order of their real parts
[with {ṽi} = eig(L̃)]. If L̂ is not diagonalizable [23], the
analysis can be carried out by using the Jordan canonical
form of this matrix to replace diagonalization by block-
diagonalization, as explicitly shown in the Supplemen-
tal Material [24]. In both cases the cluster synchronous
state is stable if Λ(σv̂i) < 0 for i = 2, . . . ,m, where Λ is
the largest Lyapunov exponent of Eq. (5) and v̂2, · · · , v̂m
represent the transverse modes; the maximum transverse
Lyapunov exponent (MTLE) determining the stability of
the synchronous state is maxi Λ(σv̂i). Moreover, for the
large class of oscillator networks for which the stability
region is bounded and connected [25–28], as assumed here
and verified for all models we consider [29], the synchro-
nizability of the symmetry cluster can be quantified in
terms of the eigenratio R = Re(ṽm)/Re(ṽ2): the smaller
this ratio, in general the larger the range of σ over which
the cluster synchronous state can be stable. The cluster
subnetwork is most synchronizable when v̂2 = · · · = v̂m,
which also implies that all eigenvalues are real and in
fact integers if the network is unweighted as considered
here [30]. It is important to notice that the optimality
of the cluster subnetwork and associated properties are
conserved in the sense that if ṽ2 = · · · = ṽm for the iso-
lated cluster, then v̂2 = · · · = v̂m will hold for the cluster
as part of a larger network. Since the analysis above does
not invoke the continuity of the equations anywhere, it
holds for discrete-time systems as well. In this case one
can simply replace δẊ and δX in Eq. (4) by δX(t + 1)
and δX(t), respectively.

Now we can compare symmetry clusters with optimal
clusters and show rigorously that almost all optimally
synchronizable clusters are asymmetric. Without loss of
generality, we consider an unweighted cluster in isolation
and assume it has m nodes and ` directed links internal
to the cluster. In a symmetry cluster, because the nodes
are structurally identical, the in- and out-degrees of all
nodes must be equal. Thus, ` must be divisible by m if
the cluster is symmetric. In an optimal cluster, because
ṽ2 = · · · = ṽm ≡ ṽ and thus tr(L̃) = (m− 1)ṽ, it follows
that ṽ = `/(m− 1). The fact that ṽ is an integer implies
that ` must be divisible by m−1 if the cluster is optimal.
Since ` ≤ m(m − 1), the two divisibility conditions can
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symmetry
clusters

eigenratio 4 2.5 2 1.5 1

optimal
clusters

eigenratio 1 1 1 1 1

TABLE I. Connected symmetry clusters of 6 nodes and opti-
mal clusters embedded within them. Some symmetry clusters
have more than one embedded optimal network, in which case
we show one that can be obtained through a minimal number
of link deletions.

be satisfied simultaneously if and only if ` = m(m − 1)
(i.e., when the network is a complete graph). But there
are numerous optimal networks (and hence clusters) for
` < m(m− 1) [23, 30]. Therefore, for any given number
m of nodes, all optimal clusters other than the complete
graph are necessarily asymmetric, meaning that (with
the exception of the complete graph) the synchroniza-
tion stability of any symmetry cluster can be improved
by breaking its structural symmetry. This general con-
clusion forms the basis of structural AISync and holds,
in particular, when an entire network consists of a single
symmetry cluster (as illustrated below).

When viewed as isolated subnetworks, symmetry clus-
ters are equivalent to the vertex-transitive digraphs in al-
gebraic graph theory, defined as directed graphs in which
every pair of nodes is equivalent under some node per-
mutation [31, 32]. Thus, in order to improve the sta-
bility of any non-intertwined symmetry cluster from an
arbitrary network, we only need to optimize the corre-
sponding vertex-transitive digraph by manipulating its
(internal) links. In particular, this can always be done by
removing links inside the symmetry cluster [30, 33], de-
spite the fact that sparser networks are usually harder to
synchronize. For concreteness, we focus on clusters that
are initially undirected and consider the selective removal
of individual directional links. As an example, we show
in Table I all connected undirected symmetry clusters of
6 nodes and their embedded optimal networks. Apart
from the complete graph, which is already optimal to
begin with, the synchronizability of the other symmetry
clusters as measured by the eigenratio R is significantly
improved in all cases.

Because in practice it can be costly or unnecessary
to fully optimize a symmetry cluster, it is natural to
ask whether its synchronizability can be significantly im-
proved by just modifying a few links. We developed an
efficient algorithm for this purpose and summarize the
statistical results based on all connected undirected sym-
metry clusters of sizes between m = 8 and 17 in the Sup-
plemental Material [24]. On average, only about 14% of

the links need to be rewired to reduce R− 1 by half and
thus significantly improve synchronizability of symme-
try clusters. This illustrates the potential of structural
AISync as a mechanism for the topological control of
synchronization stability. Our simulated annealing code
to improve cluster synchronizability is available at [34].
This algorithm can also be used to demonstrate struc-
tural AISync in global synchronization, as shown in the
Supplemental Material [24].

Having established a theoretical foundation for our
main finding, we now turn to our experimental results.
The experiments are performed using networks of identi-
cal optoelectronic oscillators whose nonlinear component
is a Mach-Zehnder intensity modulator. The system can
be modeled as

xi(t+ 1) = βI[xi(t)]− σ
n∑

j=1

LijI[xj(t)] mod 2π, (6)

where t is now a discrete time, β is the feedback strength,
I(xi) = sin2(xi + δ) is the normalized intensity output
of the modulator, xi is the normalized voltage applied
to the modulator, and δ is the operating point (set to
π/4 in our experiments). Each oscillator consists of a
clocked optoelectronic feedback loop. Light from a 780
nm continuous-wave laser passes through the modula-
tor, which provides the nonlinearity. The light inten-
sity is converted into an electrical signal by a photore-
ceiver and measured by a field-programmable gate array
(FPGA) via an analog-to-digital converter (ADC). The
FPGA is clocked at 10 kHz, resulting in the discrete time
map dynamics of the oscillators. The FPGA controls a
digital-to-analog converter (DAC) that drives the mod-
ulator with a voltage xi(t + 1) = βI[xi(t)], closing the
feedback loop. The oscillators are coupled together elec-
tronically on the FPGA according to the desired Lapla-
cian matrix. Specifically, the experimental system uses
time-multiplexing and time delays to realize a network
of coupled oscillators from a single time-delayed feedback
loop, as described in detail in Ref. [35]. A schematic il-
lustration of the experimental setup can be found in the
Supplemental Material [24].

We first consider the network configuration shown in
Fig. 1(a), which is a complex network with five symme-
try clusters. The symmetry cluster highlighted in ma-
genta is non-intertwined, and can be optimized by re-
moving the red dashed links. The MTLE calculation in
Fig. 1(b) predicts AISync to be common in the param-
eter space. Fixing β = 6, we performed 8 runs of the
experiment starting from different random initial condi-
tions, and measured the normalized voltages xi for 8196
iterations at each fixed coupling strength before increas-
ing σ by 0.015. The synchronization error is defined as

∆ =
√∑

1≤i≤m ‖xi − x̄‖2/m, where x̄ is the mean inside

the cluster. The data points in Fig. 1(c) correspond to
the average synchronization error 〈∆〉, defined as ∆ av-
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FIG. S8. Experimental demonstration of structural AISync in cluster synchronization. (a) Example network in which a
symmetry cluster (magenta) is optimized for synchronization by removing links (red). (b) Predictions based on the theoretical
computation of the MTLE, showing that in the �⇥� parameter space there is an AISync region (purple); the other colors indicate
the regions where both clusters synchronize (blue) and where neither cluster can synchronize (green). (c) Experimentally
measured average synchronization error h�i in the original (orange) and optimized (blue) cluster for � = 6. The experimental
results are in good agreement with the MTLE calculations (color-coded curves).
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FIG. S9. Experimental demonstration of Structural AISync in intertwined clusters. (a) Example network in which two
intertwined clusters (magenta) are optimized to induce synchronization by removing red links. (b) The region in the � ⇥ �
parameter space satisfying condition (S4) is expanded from orange shaded area to include purple shaded area when the clusters
are optimized. Dark purple area corresponds to the AISync region determined through direct simulations. (c) Experimentally
measured average synchronization error h�i in the original and optimized clusters when moving through the parameter space
quasi-statically along the dashed line in (b). The blue dots are not seen because h�i are almost identical in the two optimized
clusters.

FIG. 1. Experimental demonstration of structural AISync
in a non-intertwined cluster. (a) Example network in which
a symmetry cluster (magenta) is optimized for synchroniza-
tion by removing the red links. (b) Predictions based on the
theoretical computation of the MTLE, showing that in the
σ×β parameter space there is an AISync region (purple); the
other colors indicate the regions where both clusters synchro-
nize (blue) and where neither cluster can synchronize (green).
(c) Experimentally measured average synchronization error
〈∆〉 in the original (orange) and optimized (blue) cluster for
β = 6. The experimental results are in good agreement with
the MTLE calculations (color-coded curves).

eraged over the last 5000 iterations for each σ and then
further averaged over the 8 experimental runs. The error
bars corresponding to the standard deviation across dif-
ferent runs are smaller than the size of the symbols. One
can observe AISync over a wide range of the coupling
strength σ, matching the theoretical prediction. Struc-
tural AISync is also common for different oscillator types
and network structures and is robust against noise and
parameter mismatches, as demonstrated systematically
in the Supplemental Material [24].

We now turn to the case of intertwined clusters.
Consider two intertwined clusters X and Y subject
to transverse perturbations δX and δY , respectively.
The variational equation for δX has the same form
as Eq. (4) except for an additional cross-coupling term
σC ⊗ Jh(sIY )δY added to the right, where C is the ad-
jacency matrix describing the inter-cluster coupling from
cluster Y to cluster X. The variational equation for δY
is defined similarly. Now, if δX (δY ) does not converge
to zero according to Eq. (4), then the cross-coupling term
must not vanish and ‖δY ‖ (‖δX‖) must stay away from
zero in order for ‖δX‖ → 0 (‖δY ‖ → 0) in the complete
variational equation. Thus, in order to stabilize synchro-
nization in intertwined clusters, the following condition
must be satisfied for each cluster:

‖ηi‖ → 0 in Eq. (5) for all transverse modes. (7)
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FIG. S7. Experimental demonstration of structural AISync in cluster synchronization. (a) Example network in which a
symmetry cluster (magenta) is optimized for synchronization by removing links (red). (b) Predictions based on the theoretical
computation of the MTLE, showing that in the �⇥� parameter space there is an AISync region (purple); the other colors indicate
the regions where both clusters synchronize (blue) and where neither cluster can synchronize (green). (c) Experimentally
measured average synchronization error h�i in the original (orange) and optimized (blue) cluster for � = 6. The experimental
results are in good agreement with the MTLE calculations (color-coded curves).

XY

(a)

2.0 3.5 5.0
0.5

0.8

1.1

AISync

(b)

�

�

h�
i

symmetric (X)

optimized (X)

symmetric (Y )

optimized (Y )

(c)

FIG. S8. Experimental demonstration of Structural AISync in intertwined clusters. (a) Example network in which two
intertwined clusters (magenta) are optimized to induce synchronization by removing red links. (b) The region in the � ⇥ �
parameter space satisfying condition (S3) is expanded from orange shaded area to include purple shaded area when the clusters
are optimized. Dark purple area corresponds to the AISync region determined through direct simulations. (c) Experimentally
measured average synchronization error h�i in the original and optimized clusters when moving through the parameter space
quasi-statically along the dashed line in (b). The blue dots are not seen because h�i are almost identical in the two optimized
clusters.

FIG. 2. Demonstration of structural AISync in intertwined
clusters. (a) Network in which two intertwined clusters (ma-
genta) are optimized to induce synchronization by removing
the red links. (b) Region in the σ × β parameter space satis-
fying the condition in Eq. (7), which is expanded from the or-
ange shaded area to include the purple shaded area when the
clusters are optimized. The dark shades (orange and purple)
highlight the AISync region determined through direct simu-
lations. (c) Experimentally measured average synchronization
error 〈∆〉 in the original and optimized clusters when moving
through the parameter space quasi-statically along the dashed
line in (b).

In other words, ‖δX‖ and ‖δY ‖ converging to zero in
Eq. (4) is a necessary condition for stable synchroniza-
tion in X and Y . Because optimizing the clusters inde-
pendently (as if they were non-intertwined) is guaranteed
to expand the region satisfying the condition in Eq. (7),
such independent optimization is an effective strategy for
improving synchronization in intertwined clusters. For
more details on this analysis, see Supplemental Mate-
rial [24].

We demonstrate the strength of our approach on a ran-
dom network containing two intertwined clusters, which
are highlighted in Fig. 2(a). Each cluster is optimized by
removing the red dashed links, which breaks the struc-
tural symmetry but reduces the eigenratio of the cluster
to 1. The orange shade in Fig. 2(b) indicates the region
where the condition in Eq. (7) is satisfied by the original
clusters. The region satisfying this condition is expanded
to include the purple region when the clusters are op-
timized. Direct simulations allow us to identify a large
parameter region exhibiting AISync, which is highlighted
in dark shades in Fig. 2(b) and is included mainly in the
expanded (purple) region. A small portion of the AISync
region also extends into the orange region, which follows
from the condition in Eq. (7) being necessary but not
sufficient for synchronization in the original clusters. To
validate the theory and the numerics, we perform exper-
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iments with parameters varied quasi-statically along the
dashed line in Fig. 2(b). As shown in Fig. 2(c), the sym-
metry clusters are both incoherent for the entire range of
parameters studied. The two optimized clusters exhibit
perfectly synchronized dynamics except at the very edge
of the AISync region, where the noise in the ADC has a
marked impact on the dynamics (nevertheless, they are
still much more synchronized than the symmetry clus-
ters).

In summary, we established the role of structural asym-
metry (or structural heterogeneity) in promoting spon-
taneous synchronization through both theory and ex-
periments. Our theory confirmed the generality of the
phenomenon, while our experiments demonstrated its ro-
bustness. Because symmetry clusters arise naturally in
complex networks, our findings are applicable to a wide
range of coupled dynamical systems. In particular, since
identical synchronization in a symmetry cluster is the ba-
sic building block of more complex synchronization pat-
terns, our results can be used for the targeted topological
control of cluster synchronization in complex networks,
which echoes the positive effect of structural asymmetry
on input control [36].
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