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Quantum matter hosts a large variety of phases, some coexisting, some competing; when two
or more orders occur together, they are often entangled and cannot be separated. Dynamical
multiferroicity, where fluctuations of electric dipoles lead to magnetisation, is an example where
the two orders are impossible to disentangle. Here we demonstrate elevated magnetic response of a
ferroelectric near the ferroelectric quantum critical point (FE QCP) since magnetic fluctuations are
entangled with ferroelectric fluctuations. We thus suggest that any ferroelectric quantum critical
point is an inherent multiferroic quantum critical point. We calculate the magnetic susceptibility
near the FE QCP and find a region with enhanced magnetic signatures that appears near the FE
QCP, and controlled by the tuning parameter of the ferroelectric phase. The effect is small but
observable - we propose quantum paraelectric strontium titanate as a candidate material where the
magnitude of the induced magnetic moments can be ~ 5 x 10~ 5 per unit cell near the FE QCP.

Quantum matter exhibits a plethora of novel phases
and effects upon driving [1], one of which is the strong
connection between the quantum critical point (QCP) of
one order parameter and the presence of another phase.
The discussion has often focussed on the relation between
superconductivity and one or more magnetic phases [2—
4]. However, other fluctuation-driven phase transitions,
for example nematic phases in iron-based superconduc-
tors [3, 5], have also received significant attention. We fo-
cus here on the ferroelectric (FE) QCP which is a key part
of the discussion of FE behaviour, particularly in dis-
placive quantum paraelectrics [6, 7]. The behaviours that
may occur near or as a result of such an FE QCP have
been explored in various contexts [6-13], and the list of
systems where the effects of quantum fluctuations can be
observed is expanding, with temperatures up to ~ 60K
in some organic charge-transfer complexes [10, 14].

The concept of dynamical multiferroicity was intro-
duced recently as the dynamical counterpart of the
Dzyaloshinskii-Moriya mechanism, reflecting the symme-
try between electric and magnetic properties [15]. In
the Dzyaloshinskii-Moriya mechanism [16-18], ferroelec-
tric polarisation is caused by a spatially varying mag-
netic structure, leading to strong coupling between fer-
roelectricity and magnetism [19-21]. In the related
phenomenon of dynamical multiferroicity, magnetic mo-
ments m can be induced by time-dependent oscillations
of electric dipole moments p:

m=Apxdp==Cnxon. (1)

For magnetic moments to be induced, p has to exhibit
transverse fluctuations; we therefore focus on rotational
degrees of freedom of electric dipole moments [22]. The
unit direction vector of the constant amplitude electric
dipole moment is n = n(r,¢), with time derivative dyn,

and C = )\|p|2 in terms of the electric dipole moments p
(we use estimates from uniform polarisation Py = |p|V
with volume V' in FE phases), and coupling A = 7/e,
with e the electric charge. Generally, we expect that or-
ders entangled with the underlying static order can be
excited dynamically. One possibility is to use external
driving mechanisms such as light, magnetic field or lat-
tice strain to induce transient excitations of the entangled
orders [2]. The present work addresses the complemen-
tary case where inherent FE quantum fluctuations induce
entangled ferromagnetic order fluctuations without any
external drive.

In this Letter, we demonstrate that i) the fluctuating
dipoles can induce magnetic fluctuations that surround
the FE QCP, as shown in Fig. la. The mechanism for
this effect is the induction of magnetic moments by fluc-
tuating electric dipoles, described by Eq. (1), near the
FE QCP and therefore describes inherent dynamic mul-
tiferroicity. We support this scenario by calculating the
magnetic susceptibility that, as we show, diverges in the
paraelectric phase (Figs. 2 and 3), indicating a transition
to a new regime, labelled ‘Multiferroic PE’ in Fig. 1la. We
thus surmise that any FE QCP is a multicritical multifer-
roic (MF) QCP with elevated magnetic fluctuations. We
stress that the proposed effect is not due to permanent
intrinsic magnetic moments, for example from unpaired
electrons on ions, but arises solely due to dynamics of the
ferroelectric order. While the proposed effect is general,
we will consider the specific implications for magnetism
in strontium titanate (STO) and provide estimates rel-
evant to STO. ii) Within the approximations used, the
application of a magnetic field B does not introduce a
static, B-dependent mass term to the effective action for
p, and the position of the FE QCP is therefore indepen-
dent of B. The Zeeman splitting of the FE active phonon
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FIG. 1. (a) Phase diagram near a ferroelectric quantum crit-
ical point (QCP, where x = z.r) with the magnetic suscep-
tibility (red line, dashed in FE phase) at w = 0.5wo which
diverges at the vertical dashed line, leading to a new ‘Multi-
ferroic PE’ phase. The ferroelectric quantum critical region
(pale green) is now a dynamical multiferroic quantum critical
region. In both the PE (white background) and FE (yellow
background) phases, qualitatively similar behaviours of xm
are expected, despite the different underlying orders. (b) A
simple experiment using a SQUID could detect magnetic sig-
natures resulting from rotating electric dipoles in a system
towards its ferroelectric phase transition. Here, the electric
dipoles are constrained to the horizontal plane and lead to an
out-of-plane magnetic moment m and susceptibility.

modes [15, 22] meanwhile does affect the magnetic sus-
ceptibility x,, and, in higher order approximations, is
expected to lead to a B? term in the free energy, shift-
ing the FE QCP. iii) We estimate the typical induced
magnetic moment from a single rotating electric dipole
to be |m| ~ 5 x 10~ "up, where pup is the Bohr magneton.
This is for coupling A = w/e and a dipole with charge 4e
and length 1 x 1072A, rotating with frequency 0.5 THz,
typical of the titanium displacements [23-26] and the fer-
roelectric phonon modes in STO [27-29] (supplemental
material (SM), §I [30]). The overall contribution of the
fluctuating FE order is diamagnetism near the FE QCP.

Model: The system considered consists of fluctuating
electric dipoles close to the PE-FE phase transition, in-
ducing a magnetic moment via Eq. (1). In the absence
of external fields, the generic description of the system
of rotating electric dipoles consists of the paraelectric
phase: Lpp = (w? — w2) Pw,gP-w,—q> Where w, is the
dispersion of the phonon mode relevant for ferroelectric-
ity, puw,q is the rotating electric dipole moment written

in Fourier (energy w - momentum ¢) space. The para-
electric phase has negligible intrinsic magnetic contribu-
tion and we therefore ignore intrinsic magnetisation alto-
gether. However, the dynamic induction of m, Eq. (1),
will lead to magnetic susceptibility of the paraelectric
near the FE QCP.

The interaction between induced magnetic moments
can be neglected in the PE phase since the lowest order
contribution |m|* o |p|*. We assume optical phonons,
relevant for the PE-FE transition in STO [27], with dis-
persion w, given by:

x
o.)g ZW(Q) (1 - - ) +bq2 :W(Q)ém +bq21 (2)

where 0,, = x/x., describes the distance to the ferroelec-
tric QCP at x.p; wo is energy at the zero momentum of
the soft mode when = = 0, i.e. with no driving of the
system towards the FE QCP, and ¢ is the momentum.
xr is a tuning parameter that controls the paraelectric-
ferroelectric phase transition at zero temperature, such
as doping. If the system is very close to the FE QCP, the
momentum dependence is negligible and a flat dispersion
with b = 0 can be used. The system is paraelectric for
6, > 0 and ferroelectric when 6, < 0.

Although in reality both amplitude and directional
fluctuations of p are present near the FE QCP, we will
ignore the amplitude fluctuations, so the time depen-
dence of p is contained entirely in the unit direction vec-
tor n. In this model, at the boundary between the PE
and FE phases instead of |p| — 0, the dipoles rotate.
That is: in the PE phase, finite-sized electric dipoles are
present, but not aligned so the net polarisation is zero,
and in the FE phase the dipoles align. n is linearised
as: n = ng + n(¢) with dng = 0 and (n) = 0. The
zero-temperature Green’s function of the n field in w — ¢
space reads

(Aln™,) =

with A; as a constant factor. To find dynamic sus-
ceptibilities, we use the retarded Green’s function GF,
obtained by analytical continuation to real frequencies
(iw = w +in, SM, 81T [30]):

L ) (6 )

2 _ 2
w; —w 2wyq

Aj(sij(iwv Q)a (3)

O(wq +w)].
(4)

We now calculate the magnetic susceptibility x,, in the
PE phase:

GM(w,q) = Re(

(ra,t2)) = XM + x@ (5)

where m is given by Eq. (1). The two contributions to
Xm are x1) oc (RFA7) and ) o (RIRFRTA™).

The quadratic contribution in w — g space is:

Xm = (m(ry,t;)m

Xgll) = CQn%nB"AkeijkquwQGR(w), (6)



with GE(w) given by Eq. (4), the factor C? = \2V4p
gives the size of the magnetic susceptibility in terms of
the coupling A for the induced magnetic moments, and
the polarisation Py of a sample of volume V. n{ are the
components of ny around which the fluctuations are ex-
panded. The factor w? comes from the Fourier transform
of <8tﬁk6tﬁ">

The quartic contribution to the magnetic susceptibility
corresponds to a one-loop diagram as discussed in the
SM, §IIT [30], with the real part given by

P A AN

Re[y})] = f(w) (7)

8mw,,

where f(w), given in full in the SM, §IIT [30], contains 0-
functions at 2wpv/d, +w and w with weights w or wgv/9d,,
and A is a momentum cut off. The imaginary part is:

25 A A A3 (2 _9,,2
mﬂ%—c%&“A{WQ”aw%. (8)

O r2(w? — 4w?) w

If the energy w is written in terms of the ¢ = 0 phonon
energy wy, the size of the x(?) contribution is determined
by A% /wg. In STO, areas of coherent fluctuations are lim-
ited to tetragonal domains, ~ 10um [31], in which case
A3 /wy ~ 5 x 10%, for wy = 0.5THz, as suitable for the
ferroelectric optical phonons in STO. Further, the distri-
bution and size of tetragonal domains can be controlled
by both applied electric fields [32, 33] and pressure [32].

Results: The total magnetic susceptibility x,, from Eq.
(5) is plotted in Figs. 2 and 3 with the overall scale given
by the shared prefactor C? = A2V4P§ set to unity in all
plots. In STO samples, the value of C? can be estimated
from experimental data of samples tuned through the FE
phase transition by applied strain or 'O isotope substi-
tution, which indicates the possible size of the dipole mo-
ments in the PE phase: C? ~ 2 x 1073C?m?*, for bulk
STO crystals, and C? ~ 4x1073*C?m* for 10um tetrago-
nal domains [23-25]. Considering a sample with a single
induced magnetic moment of 5 x 10~7up per unit cell
and a sample volume of 1um?, smaller than the tetrago-
nal domains in STO, gives a sample magnetic moment of
8 x 10*uup, well within spin sensitivities of 2003 /v/Hz
of current SQUIDs [34].

We consider tuning towards the FE QCP at a con-
stant energy (fixed w/wp) first. In Fig. 2a, far from the
FE QCP, the system is dielectric with Re[x,»] > 0 but
not large. On moving towards the FE QCP, x,,, diverges
and changes sign at 6, = (w/wp)?; this indicates a phase
transition into a region where magnetic signatures can
be expected. As the energy is decreased, the divergence
moves towards the FE QCP and the magnetic features
are confined into a narrower range of the tuning param-
eter.

There are two contributions to the peaks in the real
part of the susceptibility: one is from the poles in Re[x(l)]
resulting in the large derivative feature at &, = (w/wp)?;
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FIG. 2. The total magnetic susceptibility in units of the com-
mon prefactor C? = X\2V4P$, and with A3/wo =1x10° as
a function of 0, at several energies. (a) the real part; (b) the
imaginary part. The behaviour in the FE phase §, < 0 is
expected to share the main qualitative features despite the
underlying order. The effects of changing the x® prefactor
A®/wo and the individual contributions of x® and X(z) are
discussed in the SM, §IV [30].

the other comes from the J-functions in Im[G*] that lead
to peaks in Re[x(?)] at 0, = (w/2wo)?. After the initial
divergence, Re[x.,] is negative apart from the sharp peak
at 6, = (w/2wp)?, below which it quickly reaches a con-
stant negative value independent of w.

The imaginary part of x,,, plotted in Fig. 2b, also
diverges as expected at the border of the magnetic re-
gion. This is followed by a divergence at §, = (w/2wp)?
corresponding to the peaks originating from () in the
real part. In the limit of 6, — 0, I'm[y,,] reaches a
positive value that depends on the energy w considered.
It is important to note that the details of both the real
and imaginary parts once the magnetic phase transition
has been passed, that is for § < (w/wp)?, are determined
solely by the higher order x(? contributions.

Changing energy while at a fixed distance from the FE
QCP is considered in Fig. 3. The peaks and divergences
at finite w are exactly those seen in Fig. 2, with an extra,
artificial, divergence of both the real and imaginary parts
at w = 0, originating from calculating x(? in the contin-
uum limit. At the lowest energies, Re[x,] < 0, it then
increases and diverges at w/wg = /9,, thus signalling
the phase transition with magnetic signatures expected
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FIG. 3. Total magnetic susceptibility, in units of C? =
AN2VAPY, and with A% /wo = 1 x 10°, as a function of w/wo at
several distances from the FE QCP. (a) real part; (b) imagi-
nary part. The peaks in the imaginary part (§—functions plot-
ted as Lorentzian fuctions) corresponding to the divergence
and sign change of the real part are weak for A®/wo = 1 x 10°
used; their presence is more easily seen at smaller values of
A? Jwo (SM, 8TV [30]).

above a critical energy scale. We note that upon increas-
ing J, to move away from the QCP, the onset of the tran-
sition moves to higher energy. The energy dependence of
the size of the imaginary part is seen particularly clearly
in Fig. 3b. In the FE phase, we expect qualitatively
similar features, despite the underlying FE order, due to
fluctuations of the ordered dipoles.

A magnetic field B, applied perpendicular to the plane
of the rotating dipoles, will have two effects. Firstly, the
phonon Zeeman effect splits the phonon modes with a
linear dependence on B [15] and moves the divergence of
Xm [which occurs at § = (w/wg)? for B = 0]. Secondly,
an additional term in the Lagrangian for the interaction
of the induced magnetic moments with the B, B-m =
AB - (p x 0:p) [22], can be treated as a perturbation to
the paraelectric system. Calculating the corresponding
second order diagram (SM, §V [30]) does not introduce a
static, B-dependent mass term, but may do so at higher
orders.

Ezperimental proposal: Strontium titanate (STO) may
be a suitable candidate material for the observation of
magnetic signatures on tuning towards the FE QCP be-
cause of its incipient ferroelectric nature below ~ 35
K and its quantum paraelectric nature below 4 K [35]
where the zero-point motion of the soft transverse op-

tical phonon mode is high enough to prevent ferroelec-
tricity even at zero temperature [36]. In O substituted
STO, wg=0(T") becomes constant below 4 — 10K depend-
ing on the distance from the FE QCP [37-41]. Thus,
rotating electric dipoles could be present over an appre-
ciable temperature range. Additional flexibility exists
because several methods are available for tuning STO
towards the FE QCP, such as Ca doping [42], *¥O sub-
stitution [24, 25, 43], strain or applied pressure [23, 28].

A simple experimental set up, consisting of a super-
conducting quantum interference device (SQUID) above
an STO sample, that may permit the observation of the
region of pronounced magnetic fluctuations is sketched
in Fig. 1b. Strain is a particularly flexible means
of tuning STO samples towards the FE QCP, and bi-
axial strain in STO thin films can confine polarisa-
tion to the plane perpendicular to the tetragonal c-
axis, but does not unambiguously determine the polari-
sation direction [44-47], a favourable condition for the
observation of the magnetic signatures proposed here.
Although strained STO is considered here, other FE
QCPs and tuning mechanisms could be studied, e.g.:
Cay_,Pb,TiO3 [48], strained KTaOg [49]. The quan-
tum dipole phase of the triangular lattice Mott insulator
k — (BEDT — TTF),Hg(SCN)2Br [50] may also exhibit
magnetic signatures of inherent dynamical multiferroic-
ity. The crucial ingredient for inherent dynamical multi-
ferroicity is incipient ferroelectricity (or quan- tum para-
electricity) and only weak anisotropy between at least
two in-plane polarisation directions, to allow the fluctu-
ations to well-defined circulating ions. In practice this
requires incipient ferroelectricity (or quantum paraelec-
tricity) and only weak anisotropy between at least two in
plane polarisation directions.

Discussion: Including the long range interactions be-
tween electric dipoles, such as those resulting from twin
boundaries between tetragonal domains with differently
oriented c-axes [51, 52], would introduce off-diagonal
terms to the Green’s function [47]. The immediate ef-
fect is a non-zero average magnetisation (M) o (nx d;n).
Alongside this, the off-diagonal components of the dielec-
tric susceptibility x¥ = (p;p;) o (i'A/) would also be
non-zero at the twin boundaries, leading to a finite Kerr
effect [53]. Further, the motion of twin boundaries may
be a means to induce relevant fluctuations of the elec-
tric dipoles [54]. Scanning SQUID measurements able to
resolve the individual tetragonal domains would be re-
quired to investigate the effects of domain structures on
the magnetic signals. Again, STO is a potential candi-
date material since tetragonal domains form naturally on
cooling through the antiferrodistortive structural phase
transition at 105 K and their distribution can be con-
trolled by applied pressure [32].

The situation examined here is distinct from that re-
cently considered in the context of multiferroic criti-
cality [12] and other systems where the quantum criti-



cal points of two or more types of order can be tuned
by the same or different parameters leading to a fan
where the quantum fluctuations of both orders are im-
portant [12, 55]. In our model, the magnetic order does
not exist independently of the ferroelectric order, leading
to an FE quantum critical region that is surrounded by a
region of strong magnetic fluctuations. While distinct
from the nematic phase transitions seen in iron pnic-
tides [5, 56], the multiferroic paraelectric region is an-
other realization of competing orders near a QCP. The
interaction between the induced magnetic moments and
an external magnetic field is expected to mostly affect
the nature of the FE phase transition, as discussed for
magnetic phase transitions [57-59].

Conclusions: We have expanded the framework of dy-
namic multiferroicity [15], and predict strongly enhanced
ferromagnetic (FM) susceptibility in a paraelectric ma-
terial near its FE QCP. The induced magnetic suscep-
tibility diverges at a finite distance from the FE QCP.
The predicted effect points to another way for entangled
quantum orders to appear. On the approach to the FE
QCP, the fluctuations of the entangled (FM) order are
enhanced as the static FE order develops quantum fluctu-
ations. We thus suggest that any FE QCP may be an in-
herent multiferroic QCP with entangled ferroelectric and
(much weaker but present) ferromagnetic fluctuations.
We expect magnetic signatures of fluctuating dipoles to
be observable experimentally, e.g. in SQUID measure-
ments and could lead to additional signatures in optical
Kerr and Faraday effects. Our results are applicable to
any ferroelectric-paraelectric transition including classi-
cal transitions at finite temperatures, where the fluctu-
ations will be confined to a narrow Ginzburg-Levanyuk
region near the transition. The effect will become pro-
nounced near the T" = 0 QCP. Finally, to illustrate this
scenario, we have considered STO as a system that can
be tuned towards its FE QCP.
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