Pressure-tuned Frustration of Magnetic Coupling in Elemental Europium
Shu-Ting Pi, Sergey Y. Savrasov, and Warren E. Pickett
Phys. Rev. Lett. 122, 057201 — Published 6 February 2019
DOI: 10.1103/PhysRevLett.122.057201
Pressure-tuned Frustration of Magnetic Coupling in Elemental Europium

Shu-Ting Pi,1 Sergey Y. Savrasov,1 and Warren E. Pickett1,*

1Department of Physics, University of California Davis, Davis, California 95616 USA

Applying linear response and the magnetic force theorem in correlated density functional theory, the inter-sublattice exchange constants of antiferromagnetic Eu are calculated and found to vanish near the pressure of $P_c=82$ GPa, just where magnetic order is observed experimentally to be lost. The Eu $4f^7$ moment remains unchanged at high pressure, again in agreement with spectroscopic measurements, leaving the picture of perfect frustration of interatomic Ruderman-Kittel-Kasuya-Yoshida couplings in a broad metallic background, leaving a state of electrons strongly exchange coupled to arbitrarily oriented, possibly quasistatic local moments. This strongly frustrated state gives way to superconductivity at $T_c=1.7$K, observed experimentally. These phenomena, and free energy considerations related to correlations, suggest an unusual phase of matter that is discussed within the scenarios of the Doniach Kondo lattice phase diagram, the metallic spin glass class, and itinerant spin liquid or spin gas systems.

The behavior of local moments and their ordering as some external parameter (volume, electron density, magnetic field) varies lies at the root of several paradigmatic phenomena, viz. the Kondo effect, heavy fermion superconductivity, spin liquid, and spin glass phases. The $4f$ shell in lanthanides (Ln) has provided a unique platform for the study of several of these issues. Ce and Yb compounds, with their $4f$ level near the Fermi energy, show $4f$-conduction electron coupling that can be tuned across the Doniach critical point from antiferromagnet (AFM) to Kondo lattice at ambient pressure. Reduction in volume is needed to drive other lanthanides into exotic phases.

Experimentally, a study by Jackson et al.[1] of six Ln metals with pressure tuned in the 5-12 GPa range indicated a linear decrease in the magnetic ordering temperature T_m roughly in proportion to the de Gennes factor of the $4f$ ion. However, higher pressures bring more complex behavior due to structural transitions and band structure changes. In the lanthanides (Ln) Tb, Dy, and Nd, T_m varies as much as 150K through pressure ranges up to 1.5 mbar,[2–4] often non-monotonically. In Eu, however, after non-monotonic behavior in $T_m(P)$ due to structural transitions,[5, 6] in the $Pnma$ structure that exists in a range around 80 GPa, T_m falls to 11K at $P_c=82$ GPa whereupon magnetic order is replaced with superconductivity (SC) up to 3K.[7]

Advances in modeling exchange coupling in Ln metal[8–11] have dealt with ordering. This first order disappearance of antiferromagnetic (AFM) quantum critical point that is actively studied in weak AFMs.[12] This paramagnetic (PM) phase, with its superconducting (SC) ground state in the midst of disordered spin, may provide a platform for learning more about Ln magnetic interactions, and perhaps more general issues about neighboring phases near a QCP, possibly including a spin liquid or spin gas phase coexisting with SC.

This behavior can be compared with that of Yb. Under pressure, Yb undergoes a valence transition,[13–16] from divalent f^{14} to somewhere near trivalent f^{13} through a continuous evolution through intermediate valence and emergence of a local moment, a crossover that has been simulated successfully by dynamical mean field calculations[16] up to 40 GPa. Recently Song and Schilling have reported[17] that Yb, notwithstanding its f^{13} local moments, becomes superconducting in the 1.4–4.5 K range at 80 GPa and above. This behavior has parallels with, but distinctions to, that of Eu, to which we return to in the discussion.

The PM phase above P_c is unusual in having large spins on a dense periodic lattice interacting via RKKY Heisenberg exchange (the spins are isotropic) yet they do not order, a signature of a type of frustration that is not apparent. Following the classification of Sachdev and Read,[18] we refer to this as the metallic quantum paramagnet (MQPM) phase. Beyond the question of (dis)ordering, there is the perplexing issue of superconductivity in a metal with disordered strong local moments. A simple scenario would be that Eu would be driven through a valence transition to the non-magnetic $f^6 J=0$ configuration, in which case there is no magnetic impediment to superconducting pairing, viz. the isovalent rare earth metal Y becomes an impressive superconductor under pressure, with T_c up to 17 K.[19] We find that Eu, unlike Yb, in not near a change in valence up to 100 GPa or more.

While early studies suggested a valence transition below 80 GPa,[21] more recent x-ray absorption data confirms that Eu retains its f^7 moment even in the SC phase above 82 GPa,[17, 22] in agreement with our calculations. The SC phase is then of an exotic type in which pairing occurs within a dense lattice of large but disordered and uncompensated moments. These questions have led us to perform systematic calculations of the electronic structure and magnetic coupling of Eu at pressures up to the 100 GPa range.

Like all Ln metals, Eu displays structural transformations with increasing pressure. Structural information is provided in the Supplemental Material (SM). The vol-
LSDA+U rather than LDA+U because the spin-density
the magnetic force theorem.[29] Consider the electronic
and efficient method is to use linear response theory and
change constants out to arbitrary distance. An effective
stants, which are linear combinations of interatomic ex-
Instead we focus on the AFM sublattice exchange con-
mation.

Fig. 1. (color online) The relative volume V/V_0 ratio as a function of the a lattice constant (a) bcc (b) hcp (c) Pnma.
The lattice structures were obtained from experiments. Red
dash lines indicate the V/V_0 ratio of pressures where the structures
are confirmed stable in experiments, as given by Bi et al.[5]

ume decrease V/V_0 ratio (V_0 is the ambient volume) and
the regions of stability of the three phases[5] are shown with the magnetic structures in Fig. 1. The evidence is that Eu displays AFM order from ambient to $P_c = 82$ GPa. At P_c, magnetic order vanishes and superconductivity emerges with critical temperature $T_c = 1.7$K, increasing with pressure up to 2.8K at 142 GPa.[7] As recently reported[6] and as we confirm from calculation, the large moment on Eu persists (the f^7 moment in Gd is calculated[23] to persist to 500 GPa), making the interplay between large but disordered moments and SC, and its dependence on pressure, unresolved issues.

Our density functional theory (DFT) calculations employ the full potential linearized-muffin-tin-orbital method (LMTO).[24] The local spin density approximation (LSDA) with Hubbard U correction (LSDA+U) is applied to the localized 4f shell orbitals of Eu, using the localized limit functional implemented in the LMTO package in rotationally invariant fashion.[25, 26] A reasonable value is $U = 6-7$ eV at ambient pressure;[27] we have used $U=7$ eV, $J=1$ eV at zero pressure and at high pressure we investigate smaller values of U. We use LSDA+U rather than LDA+U because the spin-density mediated intra-atomic $f-d$ Hund’s coupling that polarizes the conduction electrons is important to include and assess. See Supplemental Material for additional information.

Interatomic RKKY exchange constants are known to extend out to dozens of neighboring shells in Eu.[27, 28] Instead we focus on the AFM sublattice exchange constants, which are linear combinations of intratomic exchange constants out to arbitrary distance. An effective and efficient method is to use linear response theory and the magnetic force theorem.[29] Consider the electronic Kohn-Sham Hamiltonian $H_{KS} = T + V_0 + V_{sp}$, where T is kinetic energy, V_0 is the spin-independent potential, and V_{sp} is the spin-dependent potential including the contribution from U. We write $V_{sp} = \vec{\sigma} \cdot \vec{B}$, $\vec{B} = [v_{xc,\uparrow}(r) - v_{xc,\downarrow}(r)]\hat{B}$, where $\vec{\sigma}$ is the electron spin vector of Pauli matrices. \vec{B} appears as an effective Zeeman field arising from the spin-dependent exchange-correlation potential v_{xc}.

If one rotates the moment on AFM sublattices τ, τ' in unit cells R, R' by infinitesimal angles $\delta \theta_{\tau R}$, $\delta \theta_{\tau' R'}$ respectively, the second order energy difference is related to the exchange constants by

$$J_{\tau \tau'}^{\alpha \beta} = \frac{\delta \mathbf{E}}{\delta \mathbf{\theta}_{\tau R}} \frac{\delta \mathbf{E}}{\delta \mathbf{\theta}_{\tau' R'}} = \sum_{q} J_{\tau \tau'}^{\alpha \beta}(q) e^{iq\cdot(R-R')} ,$$

$$J_{\tau \tau'}^{\alpha \beta}(q) = \sum_{k,j,j'} B_{k,j;+q,j'}^{\tau \alpha} B_{k,j+k,q,j'}^{\tau' \beta} * f_{kj} - f_{k+q,j'},$$

$$B_{k,j;+q,j'}^{\alpha} = (k,j||\sigma \times \mathbf{B}_{\tau}||k+q,j').$$

Here j, j' are band indices, α, β are Cartesian coordinates, k, q are wave vectors, f_{kj} is the Fermi function, ϵ_{kj} and $\epsilon_{k+q,j'}$ are the LSDA+U energies and eigenstates. This method has been confirmed to work well in several transition metal oxides and rare earth compounds. A version extended to systems with strong spin-orbit coupling and multipoar electron interactions was also proposed and applied successfully.[8, 9]

The initial questions to address are the 4f occupation and the position of the 4f levels with respect to the Fermi energy E_F. Technical details are provided in the SM. For all structures and pressures studied, the full $S = \frac{7}{2}$ 4f contribution persisted, with a conduction band (5d) contribution of 0.1-0.2 μ_0 when spins were aligned. The 4f bands are centered near -5 eV, with the main change with pressure being that the 4f band “width” increases, primarily a crystal field increase rather than a hopping amplitude increase. For comparison, the 4f configuration of Gd has been calculated to remain stable to 500 GPa and above.[23] To indicate the magnitude of the exchange constants and provide connection with future experiment, the spin wave spectrum for the ambient pressure bcc phase was calculated and is provided in the SM.

Magnetic coupling of the Ln metals in general and Eu in particular, with their non-overlapping local moments within an itinerant electron sea, is due to the conduction electron mediated RKKY exchange mechanism described above. Throughout the pressure range studied, and in particular in the regime where magnetic order vanishes, the Fermi surface is large and multisheeted but evolving, as pictured in Fig. 2. Large sheets are separating in the vicinity of P_c, but this change in Fermi surface topology does not lead to significant van Hove singularities in the density of states nor to identifiable structure in J_{ij} versus pressure. While spiral magnetic order is commonly identified with nesting of sheets of Fermi surface, stable AFM order while the Fermi surface evolves argues against any nesting origin of ordering.

Equations (2-4) were used to calculate the sublattice
FIG. 2. (color online) The Fermi surfaces of Eu at the relative volumes, with respect to that at 75 GPa, of +6%, 0, -4%, and -10%. At all volumes the surfaces are large and multisheeted, varying through changes in topology with the only effect being the decrease in exchange constants and hence the ordering temperature, which vanishes around 82 GPa.

exchange constants $J_{\tau \tau'}$ based on the AFM ordered state. With two up and two down spins, symmetry reduces the number of constants to three, viz. up1-up1, up1-down1, up1-down2, denoted below by J_{12}, J_{13}, J_{14} respectively. The RKKY expression includes momentum-conserving virtual excitations, with those near the Fermi level having larger weight. In the $q \rightarrow 0$ limit, inter-sublattice exchange constants contain distinct intraband and interband terms (for general q there is no distinction). The energy denominator makes exchange coupling somewhat sensitive to Fermi surface nesting, and several examples of incommensurate (often spiral) order in lanthanides have been traced back to Fermi surface calipers. The interband contribution will be continuous and more slowly varying than the intraband contribution. The calculated $J_{\tau \tau'}(q = 0)$ couplings versus pressure are shown in Fig. 3 for U=5, 6, 7 eV. For bcc and hcp Eu, Fig. 3(a),(b) respectively, the single sublattice coupling is FM for J_{12} and AFM in sign for the other two, and each increases monotonically in magnitude over the range of interest.

The behavior in the high pressure P_{nma} structure is different. In Fig. 4(c)-(f) J_{12}, J_{13}, J_{14} at $q=0$ are shown, with increasing pressure and for U=4, 5, 6 eV. U affects primarily the magnitude, not changing the behavior as volume is reduced. The trend with increasing pressure is for all three sublattice couplings to decrease in magnitude and pass through zero nearly simultaneously, signaling a collapse of the spinwave spectrum and frustration of sublattice coupling rather than frustration of magnetic order. This trend is nearly independent of the value of U; the collapse occurs at somewhat lower pressure as U is decreased. U is expected to decrease under pressure from the $U = 6 - 7$ eV value that is realistic[27] at ambient pressure. Note that the curves in Fig. 3(c-f) become unphysical beyond P_c. It is not unusual in highly frustrated magnets to encounter a range of exchange couplings for which AFM order vanishes.

Eu thus provides a contrast to the Fe-pnictides where impact of magnetic interactions on the phase diagram has been actively studied. Our methods applied to Fe pnictides led to (1) effective short-range coupling, and (2) AFM order that vanishes due to first neighbor (J_1) and second neighbor (J_2) coupling as J_1/J_2 approaches unity.[36, 37]. Such a J_1-J_2 model near frustration, with spins damped by conduction electrons, was proposed by Wu et al.[40, 41] to account for the quantum critical point versus isoelectronic As\rightarrowP doping in BaFe$_2$As$_2$. Recently Sapkota et al.[39] reported near-perfect J_1-J_2 frustration in an itinerant metallic system, square lattice.
CaCo$_{1.86}$As$_2$ tuned (naturally) by Co vacancies. Frustration in Eu is in a stoichiometric lattice with local moments and RKKY interactions, so the mechanism of frustration – volume evolution of many exchange constants – is distinct.

Discussion. Both experiment and our calculations concur that Eu retains its f^7 local moment without valence change,[6] and magnetic coupling vanishes at P_c. Ev- idently the evolution of the electronic structure plays a critical role by inducing a AFM-MQPM transition. That the three independent couplings vanish together at $P \approx P_c = 82$ GPa suggests that the Kondo coupling be- tween spin and conduction electrons dominates RKKY coupling[42] and has decreased dramatically with pressure. We have calculated the hybridization function[35] and determined that this is not the case.

A schematic phase diagram based on experimental data is presented in Fig. 4. Magnetic order decreasing to $11K$ vanishes at P_c, and superconducting electronic order emerges as the ground state of this MQPM. This ground state presents a potentially new phase: a superconducting condensate in the midst of large disordered moments (not compensated by Kondo coupling) below $T_c=1.7K$. The character of the transition from AFM order to an MQPM phase at P_c seems intimately related to the question of magnetic correlations in the MQPM phase. In the free energy $F(P,T) = E_{DFT}(V(P)) + PV_{DFT}(P) + E_m(P,T) - TS_m(P,T)$ the first two quantities are available from DFT calculations and are linear in P and T-independent at low T since (1) no structural change occurs,[5] and (2) the magnetic moments remain, only the magnetic order vanishes.[6] The electronic entropy $\frac{2}{3}k_B T N(E_F) \sim \frac{2}{3}k_B T/W$, where the bandwidth is $W \approx 2 - 4$ eV, is orders of magnitude smaller than the magnetic terms and has not been displayed.

The magnetic contributions, E_m and S_m from spin-waves in the AFM phase, or spin disorder in the PM phase, must account for the small free energy change across the transition. The difference in entropy between ordered and uncorrelated moments at high temperature is $S^\infty = k_B ln(2S + 1) = 3k_B ln2$ for $S = \frac{7}{2}$. A rough (factor of two) estimate of the entropy of the ordered phase can be taken from the linear spin-wave theory expression $S_{AFM} = \beta(P) T^3$; β is P-dependent because it depends on the exchange couplings $\{J_{\alpha\beta}\}$. The entropy just above T_N is roughly $S^\infty/2$, a common value for AFMs. Equating these at T_N, one obtains the change across the transition as temperature is lowered for $P < P_c$

$$\Delta[TS_m(P,T)] \approx \frac{1}{2} S^\infty T [1 - \frac{T^3}{T_N(P_c)^3}],$$

which is smooth and small across the magnetic transition but becomes sizable at somewhat lower temperature.

However, supposing uncorrelated moments for $P > P_c$, the change in entropy across P_c has the same form: the increase in entropy contributes to the loss of magnetic order above P_c, with a finite jump for $T < T_N(P_c) = 11K$ but vanishing at (P_c, T_N), giving no driving force for a first order transition at this point in the phase diagram.

The magnetic energy E_m of thermally excited spin-waves, $E_m(P,T) = \int d\omega D(\omega, P) n(\omega/T)\ln(\omega/T)$ in terms of the spinwave density of states $D\ln(\omega/T)$, is replaced above P_c with contributions depending on the degree of magnetic correlation among the disordered spins. Total lack of correlation is unrealistic, in fact considerable short-range correlation must survive to leave only a small change in the free energy at P_c. The result: the necessary small change in free energy across P_c implies spin correlations in the MQPM phase, possible characterizations being a spin liquid[43] or spin glass.[44] YMn$_2$ and CaCo$_{1.86}$As$_2$ both are magnetic met- als that have been discussed as spin liquids,[38, 39] but unlike Eu they are understood in terms of frustrating short-range interactions.

In closing, we comment on the unconventional electronic state in the SC phase. The scenario that has emerged is that of superconducting pairs co-existing with a spin glass or spin liquid magnetic system, presumed classical given the large value of the moments. With negligible quantum fluctuation and the temperature being low compared to other scales, one has pairing in the midst of quasistatic spins. Superconductivity in the context of spin glasses has been discussed, for example by Galitski and Larkin.[45] and an example proposed by Davidov et al.[46] however spin glasses are nearly always treated in the dilute impurity limit where positional disorder is a central issue, whereas the spins in Eu are dense and per- odic. Our calculated exchange splitting of the Eu d bands for ferromagnetic alignment indicates a local on-site $f - d$
Hund’s exchange strength near 1 eV, corresponding to a FM Kondo coupling of $K = 1.0/(\frac{1}{2} \times \frac{1}{2}) \approx 0.5$ eV. This strong coupling suggests comparable spin-disorder broadening of the conduction bands, hence washing out of the Fermi surface. Spin-disorder is normally destructive of pairing, unless the mechanism actually proceeds through, and depends on, the dynamic spin system. Such pairing, if it is responsible, lies in a different regime in Eu than for the cuprates, Fe-based superconductors, and heavy fermions, where magnetic fluctuations of small moments are intimately mixed into the conduction states. Yb at high pressure, as discussed in the introduction, presents a SC phase that may possess similarities to that of Eu.

We thank Wei-Ting Chiu, R. Kremer, R. R. P. Singh, J. Oitmaa, and J. S. Schilling for helpful communications on this project. Support from DOE NNSA grant DE-NA0002908 (S.T.P.) and NSF grant DMR-1607139 (W.E.P.) are gratefully acknowledged. For computational facilities, we used the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by DOE under Contract No. DE-AC02-05CH11231, as well as an in-house cluster at UC Davis.

* wepickett@ucdavis.edu

