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Aiming at a better understanding of anomalous and topological effects in gauge theories out-of-
equilibrium, we study the real-time dynamics of a prototype model for CP-violation, the massive
Schwinger model with a θ-term. We identify dynamical quantum phase transitions between dif-
ferent topological sectors that appear after sufficiently strong quenches of the θ-parameter. More-
over, we establish a general dynamical topological order parameter, which can be accessed through
fermion two-point correlators and, importantly, which can be applied for interacting theories. En-
abled by this result, we show that the topological transitions persist beyond the weak-coupling
regime. Finally, these effects can be observed with table-top experiments based on existing cold-
atom, superconducting-qubit, and trapped-ion technology. Our work, thus, presents a significant
step towards quantum simulating topological and anomalous real-time phenomena relevant to nu-
clear and high-energy physics.

PACS numbers:

Introduction. The topological structure of gauge theo-
ries has many important manifestations [1–5]. In quan-
tum chromodynamics (QCD), e.g., it allows for an ad-
ditional term in the action that explicitly breaks charge
conjugation parity (CP ) symmetry [6–8]. Though the
angle θ that parametrizes this term is in principle uncon-
strained, experiments have found very strong bounds on
CP violation, consistent with θ = 0 [9]. In one elegant ex-
planation, θ is described as a dynamical field that under-
goes a phase transition, the ‘axion’ [10–12], which is cur-
rently sought after in experiments [13]. However, the con-
trolled study of topological effects far from equilibrium
remains highly challenging [14]. So-called quantum simu-
lators offer an attractive alternative approach. These are
engineered quantum devices that mimic desired Hamil-
tonians in an analog way or synthesize them on digital
(qubit based) quantum computers [15–17]. While theo-
ries of the standard model, such as QCD, are beyond the
current abilities of quantum simulators, existing technol-
ogy [18, 19] can already simulate simpler models, which
puts insights into the topological properties of gauge the-
ories within reach. In this respect, the massive Schwinger
model [20], describing quantum electrodynamics (QED)
in 1+1 dimensions, is particularly interesting because it
allows for a CP -odd θ-term similar to QCD. However,
while ground state and thermal properties of QCD and
of the Schwinger model have been extensively studied
[21, 22], much less is known about their topological struc-
ture out of equilibrium.

In this work, we investigate the non-equilibrium real-
time evolution of the massive Schwinger model after a
quench of the topological θ angle. We find topological
transitions in the fermion sector, which appear as vor-
tices in the single-particle propagator when θ changes by
more than a critical value. In the limit of vanishing gauge

coupling, we rigorously connect this phenomenon to dy-
namical quantum phase transitions (DQPTs), which in
condensed-matter lattice models are currently receiving
considerable attention [23–26]. A topological nature of
DQPTs has previously been revealed in non-interacting
theories [27–29]. Here, we demonstrate how to construct
a general dynamical topological invariant that is valid in
the continuum and, most importantly, also in interact-
ing theories. Moreover, our topological invariant pro-
vides a physical interpretation of DQPTs in terms of
fermionic correlation functions. Enabled by this result,
we use non-perturbative real-time lattice calculations at
intermediate to strong coupling to show that the topo-
logical transition persists up to e/m . 1. Already for
lattices as small as 8 sites, we obtain good infrared con-
vergence. Moreover, the relevant phenomena occur on
time scales that have already been accessed in proof-of-
principle quantum simulations of gauge theories [18, 19].
These features will enable near-future experiments based
on trapped ions [18], superconducting qubits [19], and
cold neutral atoms [30] to probe this dynamical topolog-
ical transition.

θ-quenches in the massive Schwinger model. The mas-
sive Schwinger model is a prototype model for 3+1D
QCD since both share important features such as a non-
trivial topological vacuum structure and a chiral anomaly
[20, 21]. CP violation can be studied by adding a so-
called topological θ-term, (eθ/2π)Ex, to the Hamiltonian
density, where E is the electric field and e the dimen-
sionful gauge coupling. In temporal axial gauge, and by
making a chiral transformation, the θ-term can be ab-
sorbed into the fermion mass term to give the following
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Hamiltonian [20],

Hθ =

∫
dx

[
1

2
E2
x + ψ†xγ

0
(
iγ1Dx +m eiθγ

5
)
ψx

]
. (1)

Here, ψ are two-component fermion operators, γ0/1 con-
stitute a two-dimensional Clifford algebra, and γ5 ≡
γ0γ1. The Hamiltonian contains the energy of the elec-
tric field, the kinetic term of the fermions, which are
coupled to the gauge sector via the covariant derivative
Dx = ∂x+ ieAx, where e is the electric coupling, and the
fermion rest mass m. While the addition of the θ-term
is an imaginary contribution to the action (see e.g. [31]),
we emphasize that the Hamiltonian (1) remains hermi-
tian. In particular, its spectrum is real and θ does not
introduce any instability.

Here, we wish to study how topological properties ap-
pearing through the CP -violating θ-term become mani-
fest in the real-time dynamics of the theory. To this end,
we prepare the system in the ground-state |Ω(θ)〉 of Hθ

and switch abruptly to another value θ′, thereby quench-
ing the system out of equilibrium. Since the θ-angle in
the massive Schwinger model has the same topological
origin as its counterpart in 3+1D QCD, we can interpret
the studied quench as a classical, external axion field.
In the following, we will show that this quench generates
topological transitions, which appear as momentum–time
vortices in the phase of the gauge-invariant time-ordered
Green’s function,

gθ→θ′(k, t) =

∫
dx e−ikx〈ψ†(x, t)e−ie

∫ x
0
dx′ A(x′,t)ψ(0, 0)〉.

(2)

Here, we abbreviated 〈. . . 〉 = 〈Ω(θ)| . . . |Ω(θ)〉 and
O(x, t) = eiHθ′ tO(x)e−iHθ′ t with O ∈

{
ψ,ψ†, A

}
, which

encodes the dependence on the quench parameters. We
will first discuss these topological transitions in the con-
tinuum theory at weak coupling, where we show analyt-
ically their direct correspondence to DQPTs. These re-
sults will motivate the definition of a general topological
invariant, which will enable us to study also the interact-
ing theory, discussed further below.

Weak-coupling limit. In the weak-coupling limit,
e/m → 0, the massive Schwinger model is a
free fermionic theory that can be solved analytically
by diagonalizing Hθ =

∫
dkHθ(k), with Hθ(k) =

ψ†kγ
0
(
kγ1 +m eiθγ

5
)
ψk. Figure 1 displays the phase of

gθ→θ′ as a function of (k, t) for two exemplary quenches
with ∆θ = 0.45π, π (our results here depend only on
∆θ = (θ − θ′) ∈ (−π, π]). Strong quenches in the range
|∆θ| > π

2 are accompanied by the formation of vortices at

critical times t
(n)
c = (2n−1)tc, with tc = π/ [2ω(kc)], n ∈

N and ω(k) =
√
k2 +m2. These appear in pairs of oppo-

site winding at critical modes ±kc = ±m
√
− cos (∆θ).

This observation suggests to define a dynamical topo-
logical order parameter that counts the difference of vor-

FIG. 1: Phase of the time-ordered correlator [Eq. (2)] after
θ quenches at vanishing gauge coupling. The real-time evo-
lution of the phase exhibits qualitative differences when the
quench is weaker/stronger than the critical value ∆θc = π/2,
exemplified here for ∆θ = 0.45π (left) and ∆θ = π (right).
The phase is analytic for small quenches (|∆θ| < ∆θc), while

for large quenches (|∆θ| > ∆θc) vortices form at (±kc, t(n)
c ).

The integration path C+(t), here shown for tm ≈ 9, encloses
a discrete number of vortices (marked by yellow circles), lead-
ing to integer increments of the topological invariant ν as time
progresses (see Fig. 2).

(a)

(b)

FIG. 2: Dynamical topological transitions at vanishing gauge
coupling. (a) The topological invariant exhibits jumps at crit-

ical times t
(n)
c = (2n−1)π/ [2ω(kc)] with n ∈ N, if |∆θ| > π/2,

while the dynamics is topologically trivial for |∆θ| < π/2. (b)
For |∆θ| > π/2, the rate function [Eq. (5)] shows non-analytic

kinks at times t
(n)
c .

tices contained in left (−) versus right (+) moving modes,
ν ≡ n+ − n−, with

n±(t) ≡ 1

2π

∮
C±(t)

dz
{
g̃†(z)∇zg̃(z)

}
. (3)

Here, g̃(z) ≡ gθ→θ′(k, t
′)/|gθ→θ′(k, t′)| and C±(t) is a

rectangular path enclosing the left/right half of the z =
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(k, t′)-plane up to the present time t, i.e., it runs (counter-
clockwise) along (0, 0)↔ (0, t)↔ (±∞, t)↔ (±∞, 0)↔
(0, 0) as visualized in Fig. 1. As exemplified in Fig. 2(a),
the topological invariant remains trivial for |∆θ| < π/2,
while for |∆θ| > π/2 it changes abruptly at critical times

t
(n)
c .

These critical times coincide with fundamental changes
in the properties of the real-time evolution, coined
DQPTs [23]. DQPTs are revealed in the so-called
Loschmidt amplitude, which is related to the vacuum
persistence amplitude [32] and which is a common mea-
sure, e.g., in the field of quantum chaos [33]. The
Loschmidt amplitude quantifies the overlap of the time-
evolved state with its initial condition,

Lθ→θ′(t) ≡ 〈Ω(θ)|e−iHθ′ t|Ω(θ)〉 . (4)

It is convenient to further define an intensive ‘rate func-
tion’

Γ
(L)
θ→θ′(t) ≡ − lim

V→∞

1

V
log |Lθ→θ′(t)| . (5)

DQPTs appear as non-analyticities of Eq. (5) [zeros of
Eq. (4)].

In the limit e/m→ 0, where the system is in a product
state |Ω(θ)〉 =

⊗
k |Ωk(θ)〉, the Loschmidt amplitude can

be decomposed into Fourier modes,

Lθ→θ′(t) =
∏
k

〈Ωk(θ)|e−iHθ′ (k)t|Ωk(θ)〉 . (6)

At e/m → 0, we have the additional identity
〈Ωk(θ)|e−iHθ′ (k)t|Ωk(θ)〉 = gθ→θ′(k, t). Thus, zeros of the
Loschmidt amplitude imply that the phase of the Green’s
function becomes undefined for a critical mode, enabling
the appearance of the vortices seen in Fig. 1. As a conse-
quence, at zero coupling the topological transitions and
non-analyticities of the rate function in Eq. (5) strictly
coincide [see Fig. 2(b)].

For non-interacting lattice theories, a topological na-
ture of DQPTs has previously been revealed through the
phase of the Fourier-decomposed Loschmidt amplitude,
arg [〈Ωk(θ)| exp[−iHθ′(k)t]|Ωk(θ)〉] = φgeom + φdyn [27].
Here, the total phase has been divided into a trivial dy-
namical phase φdyn(k, t) and the so-called Pancharatnam
geometric phase, φgeom(k, t). At a DQPT, the winding
number of φgeom changes by an integer. This change can
be computed by integration across (half) the Brillouin
zone at fixed time t [27], which has been used in the re-
cent experiments of Refs. [28, 29]. For this prescription to
work, however, one needs to subtract the trivial dynam-
ical phase φdyn, which can reasonably be obtained only
perturbatively close to the non-interacting case. Com-
pared to this standard prescription, our construction in
Eq. (3) has a number of advantages. First, the prescrip-
tion of Ref. [27] fails for θ 6= 0, π, where the absence of
a particle–hole symmetry makes modes at k = 0,±∞

inequivalent. Second, and more importantly, by using a
closed path in the (k, t) plane (cf. Fig. 1) only the singu-
lar geometric part contributes to the integral in Eq. (3),
irrespective of the smooth dynamical phase. Thus, to-
gether with the definition through fermionic correlators,
Eq. (2), instead of Fourier modes of the wave-function
overlap, Eq. (6), our formulation enables us to tackle also
the interacting theory.

Towards strong coupling. To investigate if the topolog-
ical transitions persist at non-vanishing coupling, e/m >
0, we perform non-perturbative real-time lattice simu-
lations based on Exact Diagonalization (ED), using the
Python package QuSpin [34]. We focus on the strongest
quench ∆θ = π (or −m→ m), using staggered fermions
with lattice Hamiltonian [35]

H

a
=

N−1∑
n=0

[
E2
n

2
+m (−1)

n
φ†nφn −

i

2a

(
φ†nUnφn+1 − h.c.

)]
.

(7)

Here, φn are one-component fermion operators on an
even number of lattice sites N , En and Un are electric
fields and links, and a is the lattice spacing. To apply
ED, we restrict the simulation to the physical Hilbert
space by solving the Gauß law constraint Gn|phys〉 = 0

with Gn = En − En−1 − e
[
φ†nφn + (−1)n−1

2

]
. In con-

trast to previous works [18, 36], we use periodic bound-
ary conditions (PBC) [71], see [37] for more details. To
efficiently compute the topological invariant ν in our nu-
merics, we adapt a formalism that has originally been
developed for computing Chern numbers in momentum
space [38]. The possibility to adapt this formalism to our
case is another feature of our definition in Eq. (3) since it
is enabled by the use of a closed integration path in the
(k, t) plane. This adaption forces ν to remain integer-
valued even when evaluated on coarse grids, thus leading
to convergence already for small lattices [72].

As can be expected from the above discussions, at
small e/m transitions in the topological invariant coin-
cide with maxima in the rate function, see Fig. 3. Fur-
ther, both structures congruently persists at larger values
of e/m. Importantly, however, while the system sizes ac-
cessible for ED do not allow one to discern clear kinks
in the rate function, the non-equilibrium topological in-
variant ν sharply distinguishes between topologically in-
equivalent phases, revealing a shift of the transitions to-
wards larger tc as e/m is increased. While the results
for e/m . 1 are already reasonably finite-volume con-
verged for the small system size plotted, at e/m & 1
finite-volume effects persist up to N = 20 (c.f. [37] and
the Supplemental Material (SM) [39]). Nevertheless, the
topological transition must vanish at sufficiently large
coupling ec because θ becomes an irrelevant parameter
in the limit m → 0 [40]. Finite size effects in our nu-
merical results hinder a quantitative determination of ec.
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(a) (b) (c)

FIG. 3: Dynamical topological transitions beyond weak coupling. (a) The integer-valued topological invariant ν clearly
distinguishes different ‘phases’ in the (t, e)-plane. The topological transition persists at larger coupling, but shifts towards later
times and appears at sufficiently large coupling. (b) The maxima of the rate function obtained from the many-body overlap
agree qualitatively with the transitions in ν, but are blurred by the finite lattice size. (c) Rate functions computed from the
full wave-function overlap [red dotted; c.f. panel (b) and Eq. (5)], from fermionic two-time correlators [orange dot-dashed; c.f.
panel (a) and Eq. (2)], and equal-time correlators [blue solid line; c.f. Eq. (8)], all indicate the same time of the first topological
transition, here illustrated for e/m = 1. Simulations are for a small lattice of N = 8 sites as relevant for first quantum-simulator
experiments, and with lattice spacing am = 0.8.

Motivated by these limitations, we propose a possible
quantum simulation of the present setup.

Quantum simulation. Importantly, the first topolog-
ical transition happens on times of order tcm ∼ 1 − 2,
which lies within coherence times that are accessible with
existing and proposed quantum simulators [18, 19, 30].
A straightforward realization of the scenario discussed in
this letter may be achieved with a quantum computer
based on trapped-ions or superconducting qubits, where
quench dynamics has been studied recently [18, 19].
Though these experiments used only four lattice sites of
staggered fermions, larger lattices are within reach of cur-
rent technology [41–44]. Very recently, it has been shown
that variational algorithms can prepare the ground state
of the lattice Schwinger model with 8 to 20 sites with
high fidelity [45, 46]. The relevant dynamics can be im-
plemented by discretizing the unitary evolution operator
into a sequence of quantum gates [18, 47]. For staggered
fermions, the mass term is realized by local rotations and
can be quenched by inverting the direction of rotation.
All observables studied in this letter can then be accessed
by an appropriate sequence of unitary operators inter-
mitted by spin flips. Alternatively, various works have
proposed analogue quantum simulators of the massive
Schwinger model [48–51]. One possible implementation
is based on a mixture of bosonic and fermionic atoms
in a tilted optical lattice [30], where the fermion mass
corresponds to Rabi oscillations between two hyperfine
states driven by radiofrequency radiation. In this setup,
a mass quench may be simply implemented by abruptly
adjusting the corresponding Rabi frequency.

These experiments may unveil the topological transi-
tions through different observables: First, a digital quan-
tum computer could in principle work with the many-
body wavefunctions to directly calculate the order pa-
rameter ν [Eq. (3)] and the rate function Γθ→θ′(t) [Eq.
(5)]. Second, one could measure the two-time correla-
tor gθ→θ′(k, t) [Eq. (2)] [52, 53] and thereby avoid the
study of many-body overlaps. Third, the discrete tran-
sition points of the order parameter are indicated also
in experimentally more accessible equal-time correlation
functions, [F (t)]αβxy ≡

〈[
ψα(t, x), ψ̄β(t, y)

]〉
. Namely, let

us define

Kθ→θ′(t) ≡
∏
k

[F(k, t) + F(k, 0)]
2
, (8)

where F = (Fs, F1, F5) are Lorentz components of
the correlator, F (t) = Fs(t)1 + Fµ(t)γµ + iF5(t)γ5[73].
In the weak-coupling limit, one has Kθ→θ′(t) =∏
k |gθ→θ′(k, t)|2 = |Lθ→θ′(t)|2 (for details, see [37]).

This motivates to define the rate functions Γ(g)(t) and
Γ(K)(t) analogously to Γ(L)(t) by replacing |L(t)| in
Eq. (5) with

∏
k |g(k, t)| and

√
K(t), respectively. We

thus have three complementary definitions that coin-
cide for e/m → 0, obtained from equal-time correlators,
Eq. (8), two-time correlators, Eq. (2), and the full many-
body Loschmidt amplitude, Eq. (4). Remarkably, as il-
lustrated in Fig. 3(c) for e/m = 1, even at intermediate
couplings the maxima of all three rate functions indi-
cate the same critical times with relative deviation less
than about 8%. See the Supplemental Material [39] for
a quantitative comparison, which demonstrates that the
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three rate functions show comparable finite size devia-
tions, which for the topological order parameter are sig-
nificantly smaller.

Besides its experimental simplicity, Eq. (8) also gives
an interesting interpretation of the dynamical topological
transition in terms of a dephasing effect. Namely, Eq. (8)
has zeros if and only if the mode kc at time tc exhibits
perfect anti-correlation with the initial state, F(kc, tc) =
−F(kc, 0). This anti-correlation is responsible for the
non-analytic behaviour of the associated rate function.

Conclusions. In this manuscript, we have studied the
real-time dynamics of massive 1+1D QED with a θ-term,
as a prototype model for topological effects in gauge the-
ories. By establishing a general dynamical topological
order parameter, which can be obtained from fermionic
correlators and is valid in interacting theories, we have
identified the appearance of dynamical topological tran-
sitions after changes in the external ‘axion’ field. A con-
nection between the topological transitions to DQPTs,
which is rigorous at zero coupling, persists in our numer-
ics of the interacting theory, thus providing a physical
interpretation of DQPTs in terms of fermionic correla-
tors. Finally, our topological order parameter can di-
rectly be applied also in the study of condensed-matter
models, where the construction of topological invariants
for interacting systems is a major outstanding challenge
[54–56].

In our study, we have identified a relevant problem for
state-of-the-art quantum simulation. The described dy-
namical transitions constitute an ideal first step because
the relevant dynamics appears at short time scales and
small system sizes. We expect the topological nature to
provide robustness against experimental imperfections,
which may provide a starting point to tackle the ques-
tion of certifiability of quantum simulation.

Despite the simplicity of the considered model, our
study shows that quantum simulators provide a unique
perspective to the topological structure of QCD out of
equilibrium. Phenomena closely related to the physics
studied in this article are the conjectured Chiral Mag-
netic and similar effects [57–60], which remain chal-
lenging in and out of equilibrium for theoretical stud-
ies [14, 61–69]. Here, a simple next step for future quan-
tum simulators is to model these effects by spatial do-
mains of the θ-parameter [70].

Note added. For a related work on dynamical quantum
phase transitions in lattice gauge theories, see the arti-
cle published on the arxiv on the same day by Yi-Ping
Huang, Debasish Banerjee, and Markus Heyl.
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