
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Flow-Arrest Transitions in Frictional Granular Matter
Ishan Srivastava, Leonardo E. Silbert, Gary S. Grest, and Jeremy B. Lechman

Phys. Rev. Lett. 122, 048003 — Published 30 January 2019
DOI: 10.1103/PhysRevLett.122.048003

http://dx.doi.org/10.1103/PhysRevLett.122.048003


Flow-Arrest Transitions in Frictional Granular Matter

Ishan Srivastava,1 Leonardo E. Silbert,2 Gary S. Grest,1 and Jeremy B. Lechman1

1Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
2School of Math, Science, and Engineering, Central New Mexico Community College, Albuquerque, New Mexico 87106, USA

The transition between shear-flowing and shear-arrested states of frictional granular matter is
studied using constant-stress discrete element simulations. By subjecting a dilute system of fric-
tional grains to a constant external shear stress and pressure, friction-dependent critical shear stress
and density are clearly identified with both exhibiting a crossover between low and high friction.
The critical shear stress bifurcates two non-equilibrium steady states: (i) steady state shear flow
characterized by a constant deformation rate, and (ii) shear arrest characterized by temporally de-
caying creep to a statically stable state. The onset of arrest below critical shear stress occurs at a
time tc that exhibits a heavy-tailed distribution, whose mean and variance diverge as a power law
at the critical shear stress with a friction-dependent exponent that also exhibits a crossover between
low and high friction. These observations indicate that granular arrest near critical shear stress is
highly unpredictable and is strongly influenced by inter-particle friction.

Granular materials exhibits complex deformation and
rheological phenomena due to the discrete character of
its constituent particles and dissipative frictional interac-
tions between them. It exists—or can co-exist—in fluid-
like and solid-like states, and transitions between these
states (i.e., yielding or arrest) are often induced by apply-
ing normal and deviatoric stresses at the boundary. His-
torically, the yielding of granular matter has been mod-
eled using failure criteria such as Mohr-Coulomb, which
predicts yield when the ratio of deviatoric to normal
stress exceeds a material-dependent threshold. Later,
plasticity theories such as Critical State Soil Mechan-
ics [1] were developed that define a critical state at which
granular matter yields at a constant critical shear stress,
pressure and volume fraction. However, these theories
are restricted to quasi-static rate-independent yielding of
granular matter. Recent advances have addressed rate-
dependence of steady granular flows by extending such
plasticity theories to visco-plastic rheology [2]. These
rheological models have been successful in describing
yielding and steady dense granular flows in various ge-
ometries [3].

However, transient granular dynamics during the ini-
tiation [4–6] or arrest of a steady flow [7] exhibit remark-
able features that are unexplained by current models,
such as anomalous velocity profiles [4, 7], hysteresis be-
tween flow initiation and flow arrest [7], transient dila-
tancy [6], and a breakdown of isostaticity [8]. In addition,
granular matter often exhibits slow unsteady creep flows
below a critical stress [9–11]. These phenomena are not
captured by existing theories.

The mechanics of granular matter near the static-
dynamic transition (i.e., quasi-static flows) are also
highly intermittent and stochastic, and remain unex-
plained by deterministic theories described previously.
Growing avalanches [12, 13], localized plastic rearrange-
ments [10], and fluctuations in stresses [14] dominate the
transition between flowing and arrested states. Although
mean-field models have been developed to predict the

statistics of such phenomena [15], their applicability in
continuum granular rheology, especially during transient
dynamical evolution, remains unclear.

It is, therefore, critical that existing theories be ex-
tended to account for the transient dynamics near the
granular flow-arrest transition, while also addressing the
highly stochastic nature of flow and deformation in that
regime. In this letter, we highlight the transient stochas-
tic dynamics of frictional granular matter near the flow-
arrest transition by approaching a critical shear stress
from a flowing granular state. The transition from a flow-
ing state to an arrested state is characterized by diverging
times that are highly dependent on the friction between
particles. Although this flow-arrest transition always oc-
curs at the same friction-dependent density and shear
stress, the times to arrest below critical shear are widely
distributed near the transition even for similar systems,
indicating the need for additional microscopic details be-
yond bulk state of stress to characterize the statistical
nature of the transition.

We probe the dynamics of shear-induced flow-arrest
transition through simulations that impose pressure and
shear stress on a bulk frictional granular system, and
allow dynamical evolution to a flowing or an arrested
state depending upon the applied stress. In this way, the
critical stress is approached along paths of constant ap-
plied pressure and shear stress, while simultaneously al-
lowing the density to evolve to a critical state via dilation
or compaction. Although several stress-controlled stud-
ies [9, 10, 16–18] have reported incipient granular yield
and flow with remarkable results, complications such as
the presence of gravity, shear banding [19] and boundary
effects [20–22] make the mechanical analysis challenging.
The present simulations, in contrast, are able to capture
the bulk behavior of the granular matter near critical
stress.

Numerical Setup.— We subject dilute granular sys-
tems, prepared at an initial density φ = 0.05, to pre-
scribed values of applied pressure pa and shear τa at zero
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gravity, such that the applied stress tensor σa is con-
strained only by: (i) (1/3)

∑
σa,ii = pa; (ii) σa,ij = τa for

i, j = 1,2 and 2,1; and (iii) σa,ij = 0 for all other indices
i 6= j. The pressure is fixed at pa = 10−4kn/d to sim-
ulate the asymptotic rigid particle regime, where kn is
the Hookean spring constant between contacting parti-
cles and d is the average particle diameter. The applied
shear τa is modulated such that two distinct dynami-
cal responses at long times are observed: (i) arrested
dynamics characterized by a vanishing bulk strain rate
γ̇ → 0, and (ii) steady flow characterized by a constant,
non-zero strain rate. The simulation method is described
schematically in Fig. 1. Here γ̇ is the second invariant of
a dynamically-evolving bulk 3D strain rate tensor γ̇ij .

A constant stress tensor is applied and maintained at
the system boundaries using the dynamical equations of
motion of the Parinello-Rahman (PR) method [23], which
treats the three basis vectors of a periodic cell as dy-
namical variables. In particular, the PR method controls
the second Piola-Kirchoff stress (which is the thermody-
namic conjugate of the Lagrangian strain [24]), but not
the Cauchy stress σij , which is defined in the deformed
state [25]. However, Cauchy stress is an operationally
meaningful measure of stress typically measured in exper-
iments, and is calculated as the sum of internal contact
and kinetic stresses in granular systems. The dynamics
of the system are driven by the imbalance between ap-
plied and measured stress, and mechanical equilibrium
is achieved upon their balance. The two invariants of
Cauchy stress: (i) pressure p= (1/3)

∑
σii and (ii) shear

τ =
(

0.5
∑
i,j τijτij

)1/2
, define the stress ratio µ = τ/p.

FIG. 1. Schematic of the simulation method. The left image
represents a starting low density configuration at φ = 0.05.
The arrows around the black periodic box represent applied
stress tensor σa, which is composed of pressure pa and shear
τa components. The two images on the right represent two
possible long-term dynamics: (top) shear arrest characterized
by a vanishing strain rate γ̇ → 0, and (bottom) steady flow
characterized by a steady non-zero strain rate.

Here τij =σij−pδij is the deviatoric stress. Such stress-
based methods have been previously used to study col-
lective jamming [26] and creep [11] in granular matter.

The simulations consist of 104 dispersed spherical par-
ticles, whose sizes are uniformly distributed between 0.9d
and 1.1d. The particles interact via a linear spring-
dashpot contact mechanical model with elastic and vis-
cous normal and tangential forces [27]. A Coulomb fric-
tion model is used to calculate tangential frictional forces
between two contacting particles, and the coefficient of
friction µs was varied between 0.001 and 1.0 to study
the effect of friction on the flow-arrest transition. Time
is normalized by the characteristic time scale

√
m/kn,

where m is the average mass of a particle, and the sim-
ulation time step is set to 0.02

√
m/kn. The Hookean

spring constant kn sets the scale for energy and stress;
therefore, all stresses are scaled by kn/d.

Dynamical Evolution.—Fig. 2(a) demonstrates the
typical evolution of γ̇ with time t for the same start-
ing state, but varying applied shear. At early times the
dilute system experiences large strain as it is unable to
resist the applied load. As time progresses and the sys-
tem compacts under pressure (see Fig. 2(b)), two distinct
dynamical scenarios emerge: (i) for high τa the system
continues to flow indefinitely at a constant strain rate;
(ii) for low τa the strain rate abruptly drops several or-
ders of magnitude as the system enters a dynamically-
arrested regime characterized by creep to a final mechan-
ically stable state. Interestingly, the bifurcation in strain

FIG. 2. Variation of (a) γ̇ and (b) φ with time t for the same
starting state and µs = 1.0, subjected to varying τa. The
arrow in (a) represents the direction of increasing τa. Top
two dashed curves represent steady flowing states, whereas
bottom two solid curves represent arrested dynamics at long
times. (c) and (d): Four curves illustrate arrested dynamics
for the same τa applied to four different starting states and
µs = 1.0. The vertical dashed lines in (a) - (d) represent t0
defined in Eq. 1. The horizontal dotted line in (c) represents
the criteria for determining onset of arrest tc, whereas the
vertical dashed lines denote tc for each of the four cases.
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rate evolution based on the magnitude of applied shear is
not reflected in the density evolution, as can be seen by
overlapping curves in Fig. 2(b). This demonstrates that
density depends only on applied pressure, which is the
same across all simulations, and shear stress has a neg-
ligible effect on its evolution for the weakly polydisperse
spheres simulated here.

Statistics of Arrest.—Although distinct regimes of
granular flow or arrest emerge as a function of applied
shear, significant statistical variations accompany the on-
set of arrest. In Fig. 2(c) the variation of γ̇ with t is plot-
ted for four different starting states (at fixed µs = 1.0)
subjected to the same applied shear, and all of which ar-
rest at long times. However, the onset of arrest varies
significantly between the four cases. In order to quantify
a time for the onset of arrest, we define tc as the time at
which the strain rate first drops below a minimal value
of 10−9, as indicated by the horizontal dashed line in the
figure. The trends presented hereafter are not sensitive to
the choice of cutoff strain rate for determining granular
arrest. Despite tc varying by more than an order of mag-
nitude in Fig. 2(c) (see dotted vertical lines, and a black
arrow depicting the span of tc), such variations are not
observed in the evolution of density, which is invariant to
the starting state, as seen in Fig. 2(d).

Systematic investigation of the dependence of tc on
friction and applied shear required significant computa-
tional effort. In order to get robust statistics, at least
103 simulations were run for each value of friction and
applied shear for at least 107 time steps, requiring a to-
tal of ∼ 105 simulations. When the applied shear is sig-
nificantly below the critical value, all systems arrested
within the duration of the simulation. However, in the

FIG. 3. Complementary cumulative distribution of arrest
times C(tc) for friction (a) µs = 10−3, (b) µs = 6.5×10−2,
and (c) µs = 1.0 at different stress ratios µ. The ar-
row represents the direction of increasing µ, and its val-
ues from left to right are: (a) (0.082, 0.109, 0.116, 0.119), (b)
(0.243, 0.246, 0.247, 0.248), and (c) (0.327, 0.339, 0.348, 0.35).
The dashed lines represent the best estimate fit for a log-
normal distribution.

vicinity of the critical shear, some simulations did not
arrest even when the applied shear was below the critical
value. For such cases, additional systems were simulated
to ensure at least 95% of the simulations resulted in the
onset of arrest. The complementary cumulative distri-
bution or survival function C(tc) for different friction µs
and stress ratio µ is shown in Fig. 3, and indicates the
fraction of simulations that arrested at time tc within
the simulation run time. Significantly, the distribution
of tc is heavy-tailed and is well-approximated by a log-
normal probability density function for most values of µ
and µs, as determined by maximum likelihood estima-
tion [28]. Although a log-normal probability distribution
function provides a better characterization of the under-
lying distribution as compared to exponential, power-law
and stretched-exponential functions, we have not rigor-
ously ruled out other distribution functions that can bet-
ter describe the heavy-tailed data. The heavy-tails of the
distribution imply that the onset of arrest has a wide dis-
tribution. Moreover, the distribution of arrest times be-
comes wider as the flow-arrest transition is approached,
thereby resulting in fewer arrested systems within a given
simulation time. Therefore near the transition, a given
granular system could potentially take an extremely long
time to arrest even as the bulk stress state suggests that
it almost certainly will arrest. An important implica-
tion of these results is that the flow-arrest transition in
granular matter is highly unpredictable.

Flow-Arrest Transition.—We further characterize the
distribution of arrest times by robust estimates of its
moments—computed from 105 bootstrapped samples of
the simulation data [29]—and associated confidence in-
tervals of these estimates [30]. Good correspondence
was observed between the estimated moments and those
calculated from a best-fit log-normal distribution. The
mean time to arrest t̄c increases rapidly as the stress ra-

FIG. 4. (a) Variation of mean time to arrest tc with µ for
increasing values (left to right) of µs (see Fig. 5 for the value
of µs corresponding to each symbol). The dashed lines cor-
respond to the fit in Eq. 1 (b) Variation of the ratio ∆(tc) of
standard deviation and mean time to arrest with µ for three
different µs =10−3, 6.5×10−2, 1.0 from left to right. The error
bars in (a) and (b) denote 95% confidence interval (error bars
are smaller than the symbol in (a)).
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tio µ is increased, and diverges at a friction-dependent
critical value of shear for all values of friction, as shown
on a semi-log scale plot in Fig. 4(a). The rate of increase
of t̄c upon approaching µc also appears to be friction de-
pendent, with small rates of increase for low and high
friction, and larger rates of increase for intermediate fric-
tion. At low values of µ away from critical shear, the
mean time to arrest saturates at a value that is indica-
tive of the early-time transient evolution.

Based on these observations, the variation of t̄c with µ
is well-described by the following power-law form for all
values of friction:

tc − t0 ∼ (µc − µ)
−α

, (1)

where µc denotes the critical stress at which mean ar-
rest times diverge, and α is the exponent of the power
law. t0 is a fitting parameter that signifies the early-time
transient evolution of the strain rate during which the
density also evolves to its close-packed steady value as
a consequence of starting from a dilute state, as shown
in Fig. 2. Although a similar power-law form of crit-
ical scaling below yield threshold was demonstrated in
stress-controlled simulations of frictionless spheres [32],
we do not rule out more complicated functional forms
that could better represent the divergence of mean times,
especially for intermediate frictions for which we observe
deviations to Eq. 1 at small applied shear (see Fig. S1
in supplemental information), and large fitting errors for

FIG. 5. (a) Critical stress ratio µc (closed symbols) and
critical density φc (open symbols) as a function of friction
µs. Black crosses correspond to critical values of stress ra-
tio adapted from Singh et al. [31]. The left-most black cross
indicates the value for zero friction. (b) Variation of expo-
nent α with friction µs, as described in Eq. 1. The error bars
for closed symbols in (a) and (b) denote the standard devi-
ation of power-law fitting error (error bars are smaller than
the symbols in (a)). The dashed line at the peak value of the
exponent (bottom) coincides with the crossover values of µc

and φc (top).

the exponent as seen in Fig. 5(b) [33].

Surprisingly, in addition to a diverging distribution
mean, the second moment of the distributed data also
diverges at the critical stress. In Fig. 4(b) the ratio of

standard deviation to mean ∆(tc) =

√
t2c−t

2
c

tc
is plotted

as a function of increasing shear stress. The diverging
nature of ∆(tc) indicates that the distribution rapidly
becomes wider and heavier-tailed upon approaching µc,
underscoring that in the vicinity of µc it is extremely diffi-
cult to predict when a flowing granular system will arrest.
This observation has important implications for practical
applications involving granular materials, such as clog-
ging in granular flow through a hopper, which has been
suggested to not exhibit a well-defined clogging transi-
tion [34].

The critical shear µc that defines the flow-arrest tran-
sition of granular matter is highly friction-dependent.
In Fig. 5(a) µc is plotted as a function of µs, and it
is an increasing function of friction. Additionally, the
friction-dependent critical value of µc is in excellent cor-
respondence with critical yield stress calculated from
flow-controlled simulations [31]. The value of critical
shear at high friction µc= 0.35 is also similar to the ob-
served value of yield stress in experiments [18] and sim-
ulations [35] on frictional granular matter. Correspond-
ing to µc, a friction-dependent critical density φc at the
flow-arrest transition is also computed by averaging over
densities for all arrested states at the largest simulated
stress ratio µ below µc. Fig. 5(a) demonstrates that φc
monotonically decreases with increasing µs. At low fric-
tion, φc=0.64, and is similar to the random close packing
density for mono-disperse frictionless spheres. At high
friction, φc=0.59, and is similar to the critical density in
critical state theory [1], which has also been observed in
experiments on frictional granular matter [18].

Intriguingly, the exponent α of power-law divergence
varies non-monotonically with friction, as shown in
Fig. 5(b). At low and high friction, the exponent is close
to unity, whereas its value is greater than one for inter-
mediate friction. Additionally, this range of intermediate
friction coincides with the crossover from low-friction to
high-friction regime, as seen by the variation of µc and φc
with µs in Fig. 5(a). Clark et al., in their stress-controlled
simulations observed a critical scaling near the yield tran-
sition of frictionless granular packings and extracted an
exponent near unity [32]. At present we do not have an
explanation for the variation of the exponent. The ex-
ponent is sensitive to the statistics of arrest times, and
large errors were observed in its fitting for intermediate
friction, as shown by the errors bars in the figure. Addi-
tionally, the arrest time statistics are likely sensitive to
system size, and finite size effects constitute an important
area of focus for future work.

Although the foregoing technical issues require further
analysis, recent theoretical work has indeed predicted
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three regimes of frictional granular rheology with a non-
monotonic dependence of kinetics on friction, especially
correlated velocity fluctuations of the particles [36]. How-
ever, the theory is formulated for steady granular flows.
Extensions of the model to transient non-equilibrium
flows can determine whether the non-monotonic varia-
tions observed here result from friction-dependent kinet-
ics.

The statistical nature of flow-arrest granular transition
described here is not captured by current deterministic
models that predict equilibrium granular plasticity and
rheology. The wide distribution of times to arrest near
the transition are apparently sensitive to microscopic de-
tails, such as stress and strain rate heterogeneity within
the microstructure, and these details need to be incor-
porated for accurately predicting the transition. Previ-
ous simulations on 2D frictional granular matter demon-
strated mechanical heterogeneity during transition from
quasi-static to inertial flows, along with a diverging cor-
relation length [37]. Although we have demonstrated di-
verging times during transient flow-arrest transition, it
remains to be tested whether a diverging length scale
also exists. Additionally, the approach to arrest transi-
tion from a flowing state is accompanied by a massive
drop in strain rate, which continues its decay with time.
At small strain rates in steady granular flows, local plas-
tic events are spatially correlated [38], and this is often
interpreted by a non-local formulation of granular rheol-
ogy [39]. Extensions of such steady-state non-local rheo-
logical formulations to include transient effects [40] could
provide a meaningful way to interpret present results.

This work was performed at the Center for Integrated
Nanotechnologies, a U.S. Department of Energy and Of-
fice of Basic Energy Sciences user facility. Sandia Na-
tional Laboratories is a multi-mission laboratory man-
aged and operated by National Technology and Engi-
neering Solutions of Sandia, LLC, a wholly owned sub-
sidiary of Honeywell International, Inc., for the U.S. De-
partment of Energy’s National Nuclear Security Admin-
istration under Contract DE-NA-0003525.
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