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We develop a geometric approach to understand the mechanics of perforated thin elastic sheets,
using the method of strain-dependent image elastic charges. This technique recognizes the buckling
response of a hole under external load as a geometrically tuned mechanism of stress relief. We
use a diagonally pulled square paper frame as a model system to quantitatively test and validate
our approach. Specifically, we compare nonlinear force-extension curves and global displacement
fields in theory and experiment. We find a strong softening of the force response accompanied
by curvature localization at the inner corners of the buckled frame. Counterintuitively, though in
complete agreement with our theory, for a range of intermediate hole sizes, wider frames are found to
buckle more easily than narrower ones. Upon extending these ideas to many holes, we demonstrate
that interacting elastic image charges can provide a useful kirigami design principle to selectively
relax stresses in elastic materials.

Kirigami, the art of cutting and folding paper has
emerged as a powerful tool to dramatically modify, re-
configure and program material properties [1–10]. Since
kirigami is scale invariant, it can be combined with rapid
miniaturization to design metamaterial response and
structures at the smallest scales [11, 12]. Such approaches
were recently demonstrated in graphene [13] and now
provide unprecendented opportunities for designing de-
vices with novel electronic and mechanical properties.
With the advent of such technologies, it has become in-
creasingly important to characterize and understand the
various ways material deformations accomodate and re-
lax stress through instabilities in thin two dimensional
(2d) elastic sheets [9, 14–19].

The mechanics of thin elastic sheets is controlled by
the dimensionless Föppl-von Kármán (FvK) number γ =
Y R2/κ [20] that indicates the relative ease of in-plane
stretching versus out-of-plane bending. Here R is a char-
acteristic linear dimension of the sheet, Y the 2d Young’s
modulus and κ the bending rigidity. Under external
load, a thin sheet trades energetically expensive stretch-
ing with bending to relieve stresses by either buckling
[20] or wrinkling [21–23], possibly followed by secondary
instabilities [16, 24, 25]. By introducing holes or cuts,
kirigami now provides a distinct route to locally relieve
stresses through these geometric features, though a gen-
eral characterization of its effective mechanical response
is not known. The inverse problem of predicting the cor-
rect kirigami pattern to relax a given pre-stress in a ma-
terial also remains an open problem, complicated by the
notorious nonlinearity inherent in thin sheet elasticity.

In this paper, we develop a geometric framework to
address some of the general mechanical consequences of
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kirigami and report on experimental measurements of
force-extension curves of pulled paper frames. A more
detailed theoretical and numerical analysis is presented
in a longer companion paper [26]. Starting with a single
square frame, we use the technique of strain-dependent
image elastic charges to show that a hole under external
load acts as a geometrically tunable source of local stress,
which is relaxed by local buckling. The lowest order im-
age elastic charge induced in a hole is a quadrupolar sin-
gularity in Gaussian curvature [27, 28]. When permitted
by the shape of the hole, this singularity can fractionalize
into partial disclinations, naturally explaining the curva-
ture localization at interior corners seen experimentally
for square frames. Thus, the buckling response of the
sheet can be viewed as the sheet screening the image
charges by adopting a curved 3d configuration that leads
to a softer force response. We find consistent agreement
between theory and experiment in the geometric depen-
dence of effective spring constants (summarized in Ta-
ble I) and the buckling threshold, along with local mea-



2

FIG. 1: Force displacement measurement. (a) Square
paper frames with thin tabs on two opposite corners are glued
to two opposed aluminum plates. The top plate can be dis-
placed upward using a micrometer screw-gauge for very fine
displacements, or using a stepper motor for larger displace-
ments. A load cell attached to the bottom plate measures
the force required to hold the frame at fixed displacement.
In our experiments, all frames had the same side length L of
5.04 cm, while the frame width w = (L−H)/2 was varied. (b)
Planar paper frame. (c) Buckled paper frame, with labeled
disclinations.

sures of deformation.

Similar buckling induced softened mechanical response
has been previously investigated in periodic arrays of slits
under uniaxial tension [7, 10, 29]. Motivated by Ref. [9],
we go beyond slits and use square holes as a nontrivial
yet simple illustration of our framework. This rational-
izes previous results, extends to arbitrary hole shapes
[39], and provides a systematic approach to handle many
holes. In addition, collective effects arising from inter-
actions between holes are neglected in works that just
analyze the unit cell of a periodic lattice, but are eas-
ily captured using the elastic charge framework. Using
a flattened cone as an example, we demonstrate how in-
teractions between image charges can guide the design
of appropriate kirigami patterns to relax the pre-existing
stress in the system.

The square frames we study were cut from sheets of
Glama Natural paper of various thicknesses (t = 0.01 −
0.02 mm) with an edge length L = 5.04 cm. The as-
pect ratio w/L, where w = (L−H)/2 is the frame width
and H is the hole size (see Fig. 1), was varied between
0 < w/L < 1/4 for reasons explained later. Frames with
larger aspect ratios corresponding to smaller holes often
tore before buckling. To measure force-extension curves,
we mount the opposite outer corners of the frames be-
tween a top and bottom plate and extend them by a dis-
tance δx (Fig. 1). To generate displacements we use a rail

guided Haydon-Kerk stepper motor to move a microm-
eter translation stage to which one corner of the frame
is attached. Coarse displacements (∼ 500µm) are gen-
erated with the stepper motor while finer displacements
(∼ 50µm), primarily near buckling, are generated using
the micrometer stage. Force measurements were made
using a Loadstar parallel cantilever loadcell attached to
the bottom plate. Further details of the experimental
protocol are given in [30]. We observe a steep increase
in force at low displacements, followed by a leveling off
beyond a critical displacement, and finally an increase at
high displacements just before the frames tear (Fig. 2a).

The initial buckling can be understood within the
framework of a stretching to bending transition. The
mechanics of the frame is governed by an elastic energy
involving both stretching and bending terms quadratic in
the stress tensor (σ) and the curvature tensor (b). Upon
minimizing, we obtain the covariant Föppl-von Kármán
(FvK) equations [31, 32],

1

Y
∆∆χ = KIm −KG , (1a)

κ∆tr(b) = σµνbµν . (1b)

Here we have used the 2d Airy stress function χ (σαβ =
εαµεβν∇µ∇νχ). The extrinsic curvature tensor is defined
by bαβ = n̂ · ∇αtβ , where n̂ and tβ are the local normal
and tangent vectors to the surface, and whose determi-
nant gives the Gaussian curvature KG of the surface.
In terms of a 3d Young’s modulus Ȳ , we have Y = Ȳ t
and κ = Ȳ t3/[12(1− ν2)], where t is the sheet thickness
and ν is the three dimensional Poisson ratio [33]. Un-
like the conventional FvK equations for thin plates, we
have additionally included a source of Gaussian curva-
ture KIm that plays the same role that defects play in
crystals [34], though in our case this function describes
a distribution of image elastic charges that are induced
within the hole and depend on the external load, serving
to enforce the appropriate boundary conditions required
by the hole [26]. Here the analogy with electrostatics
helps, in that the hole under external stress functions
like a conductive shell in an external electric field. This
framework allows for understanding the various scalings
observed in the data.

For very small diagonal displacements (δx < δxc, with
δxc the buckling threshold), it is clear that the frame
responds linearly by stretching (Fig. 2b). Though the
frame is still planar, the effective spring constant is mod-
ified by the hole geometry. Setting b = 0 (KG = 0), we
only have KIm, the image elastic charge, present within
the hole. Unlike genuine topological disclinations or dis-
locations (monopole and dipole singularities) that cannot
be created by any local deformation [27], the leading or-
der contribution to KIm is of quadrupolar form [28]. In

2d the quadrupole is written as Qij = Q(2d̂id̂j − δij)

with d̂ = (cosψ, sinψ), ψ being its orientation and Q
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FIG. 2: Experimental measurements of square frames subjected to tensile load along the diagonal. (a) Force-
displacement curves for frames with w/L = 0.25 and thicknesses varying between 0.01 and 0.02 cm. (b) When normalized by
thickness, curves collapse at small displacement, confirming that the frames are planar at this regime. (c) When normalized
by thickness cubed, curves collapse in the post-buckling regime, confirming that energy increase is predominately bending. (d)
Effective spring constant in the post-buckled regime as function of frame aspect ratio w/L in the intermediate and large hole
regimes for a frame of thickness t = 0.0198 cm, confirming the multi-scale behavior in (Table I). The curve in the large hole
regime is linear (3), while the curve in the intermediate hole regime corresponds to (2), with the pre-factor c and regularizing
cutoff a taken as fitting parameters. (e) Critical displacement as function of thickness for a frame of w/L = 0.25, growing as
t1.9 (solid line), in good agreement with Eq. (4). (f) Critical displacement as function of the frame’s aspect ratio for a frame
of thickness t = 0.00794 cm in the intermediate hole size regime, in agreement with Eq. (4) (solid line).

its magnitude. In the presence of sharp corners in the
hole geometry, the induced image elastic charge can frac-
tionalize into partial disclinations that localize at the
corners, just as in the electrostatic analogue, and gener-
ate stress fields similar to their topological counterparts
[35]. The partial disclinations have a charge that con-
tinuously depends on the external strain imposed, given
by s ≡ Q/H2 = (δx/L)Φ(w/L), where Φ(w/L) is a
rational function of the frame’s aspect ratio that en-
codes the hole geometry [26]. As w → L/2 (no hole),
Φ(w/L) ∝ (1−2w/L)2 vanishes as expected and remains
finite in the opposite narrow frame limit (w → 0). This
setup allows us to estimate the energy due to stretching
and bending.

Prior to buckling, the elastic energy of the planar
square frame is approximately E ∼ Y s2w2. For large
displacements, the frame buckles allowing KG 6= 0. As
the frame’s large FvK number (γ = Y w2/κ � 1) fa-
vors isometric deformations, the frame screens out the
induced image charge KIm with real Gaussian curva-
ture KG [35], permitting the stress free state χ = 0
to become available. By virtue of the localized partial
disclinations, the buckled frame adopts a locally coni-
cal shape near the inner corners leading to the energy
being E ∼ κ[c1s + c2s

2] ln(w/a), where a ∼ t is a mi-
croscopic core cut-off and c1, c2 are numerical constants

[35]. Since F = dE/dδx, we rescale the force-extension
curve by t and t3 for a given aspect ratio (w/L = 0.25) in
Fig. 2b,c. We find excellent collapse in the pre-buckling
and post-buckling regimes, which are controlled by Y
and κ respectively. The t3 scaling in the post-buckling
plateau indicates the force response is governed by κ and
the hole geometry alone.

The fractionalized quadrupole naturally delineates dif-
ferent geometric regimes. For w/L < 1/4, the par-
tial disclinations remain well separated and essentially
non-interacting, allowing one to approximately superpose
their buckled solutions, while for narrower frames with
w/L < 1/8 [26], higher order charges become important.
Within the intermediate frame regime (1/8 < w/L <
1/4), the effective linearized spring constant of the frame
post-buckling is then given as

keff =
d2E

dδx2
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ln
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)
[Φ (w/L)]

2
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To calculate the buckled force response of narrow frames
(w/L < 1/8) we use an alternate approach. Here,
an infinite series of multipolar charges higher than the
quadrupole become important, suggesting the appropri-
ate weakly interacting degrees of freedom are not elas-
tic charges. Instead, we treat the frame edges as quasi-
1d ribbons joined in a ring. Neglecting the high energy
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FIG. 3: Comparison between predicted and observed
deformations in a buckled frame (a) An undeformed
frame with laser printed Cartesian mesh (gray) and a set of
parametric lines (red) fitted to the printed mesh. (b) A de-
formed frame. Here, the red lines are computed from theory
using the original parametric lines as a starting point and
fictitious elastic charges as fitting parameters.

splay modes, the bending and twisting elastic energy of
a ribbon is approximated by E ∼ κwL(δθ/L)2, where
δθ ∝ δx/L is the net rotation of the ribbon across its
length [33]. Once again computing the effective linearized
spring constant for the buckled narrow frames, we obtain

keff ∝
κw

L3
. (3)

The disparate geometry-controlled scaling of keff for dif-
ferent frame widths (Eqs. 2, 3) is a signature of multi-
scale behavior. We fit the experimentally measured
spring constants of the buckled frames to the theoretical
expressions for keff as shown in Fig. 2d, with good agree-
ment. The geometric dependence of various linearized
spring constants is also summarized for both buckled and
planar frames in Table I.

For intermediate frame widths 1/8 < w/L < 1/4, given
that the frame mechanics is dictated by the partial discli-
nations, we can estimate the geometry dependence of the
frame’s buckling threshold δxc by adapting previous re-
sults on the buckling of topological disclinations [35]. As
the region of influence of the partial disclination is a cor-
ner plaquette of area ∼ w2, using the relevant FvK num-
ber γ = Y w2/κ, we obtain a threshold charge |sc| ' γc/γ
in order to buckle (γc ≈ 120 for topological disclinations,
also see [26]). Upon using s = (δx/L)Φ(w/L), we find
the critical strain,

δxc
L
∝ 1

Φ(w/L)

(
t

w

)2

, (4)

where we have used the fact that κ/Y ∝ t2. The
quadratic scaling of δxc with t is consistent with observed
data (Fig. 2e), with δxc determined by the intersection of
linear fits to the data just before and after the transition.
The dependence of δxc on the frame width w crucially
captures the geometric tunability of the local propensity

FIG. 4: (a) A conical annulus flattened under a piece of
acrylic, with a small gap allowing for wrinkle formation. (b)
Azimuthal slits do not affect the pattern of wrinkles. (c) Ra-
dial slits result in azimuthal quadrupoles, minimizing inter-
action energy with the curvature monopole. When flattened,
radial slits lead to a soft response with no wrinkles.

to relax stresses via buckling. Though we expect ultra-
narrow frames (w → 0) to have a vanishing threshold
for buckling [40] due to sheer loss of material, within the
intermediate range of hole sizes Eq. 4 in fact suggests a
counter-intuitive trend, with wider frames buckling prior
to narrow ones. This feature is observed for a thin enough
sheet in Fig. 2f.

Apart from the above global characterizations of frame
mechanics, we also probe local measures such as the
nonuniform displacement field over the entire frame,
thereby allowing for a stronger test of the theory. Us-
ing grid lines etched into the paper, painted black to im-
prove the contrast in imaging, we measure the displace-
ment field of the frame by comparing its projected mesh
just past buckling to a reference undeformed mesh. As
the uniaxial tensile load prescribes the orientation of the
induced quadrupoles, with just the scalar charge magni-
tudes as fitting parameters [41], we find the entire spa-
tial deformation field is well captured within our image
charge framework (red lines in Fig. 3) [26].

The quantitative success of our theory in describing
the mechanics of isolated frames encourages us to take
a step further and exploit the method of charges to an-
alyze kirigami patterns, which now involves interactions
between the charges in different holes. The elastic inter-
action energy of two planar quadrupoles Q1,Q2 a dis-
tance r apart is given by [36, 37]

Eint =
Y Q1Q2

πr2
cos(2ψ1 + 2ψ2) , (5)

where the quadrupole angles ψ1, ψ2 are with respect to
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the pair separation r. To demonstrate that interact-
ing elastic charges can fruitfully guide design of kirigami
meta-materials, we shall focus on the simple problem of
a flattened cone as an example of the inverse problem
in kirigami mechanics. A conical frustum (either with an
angle deficit or excess) when confined with a small gap in
the plane is stressed due to its intrinsic geometry, a state
that can be relaxed for a sufficiently thin sheet by wrin-
kling (Fig. 4a). Patterning an appropriate kirigami de-
sign affords the sheet a new mechanism of locally relaxing
in-plane stress without wrinkling. For the regular circu-
lar cone, minimizing the energy of an interacting pair of
quadrupoles with the background stress field of a positive
disclination, we find (see [30]) that the equilibrium con-
figuration favours azimuthally aligned quadrupoles. Un-
like squares that lock the quadrupole orientation to their
diagonals, slits only permit quadrupolar charges perpen-
dicular to their long axis. Hence, while azimuthal slits
leave the wrinkles unaltered (Fig. 4b), radial slits in a
staggered array (which minimizes the charge-charge in-
teractions) around the cone locally relax stress when flat-
tened (Fig. 4c). Similar slit patterns also relax stresses
in a flattened e-cone [38] as shown in [30].

In summary, we have proposed a useful elastic charge
framework to understand kirigami mechanics in thin
sheets with perforations. By relating the challenging non-
linear problem of post-buckling mechanics to the simpler
pre-buckling computation within the planar problem, we
are able to quantitatively test the analytical predictions
against experimental measurements through both global
and local measures of deformation. The inclusion of in-
teractions between charges also suggests our framework
can advise possible design strategies to pattern kirigami
metamaterials that permit engineering pathways to lo-
cally relax elastic stresses. Addressing nonlinear and
thermal effects are promising directions for future work.
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