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We report anomalous enhancement of the critical current at low temperatures in gate-tunable
Josephson junctions made from topological insulator BiSbTeSe2 nanoribbons with superconducting
Nb electrodes. In contrast to conventional junctions, as a function of the decreasing temperature
T , the increasing critical current Ic exhibits a sharp upturn at a temperature T∗ around 20% of the
junction critical temperatures for several different samples and various gate voltages. The Ic vs. T
demonstrates a short junction behavior for T > T∗, but crosses over to a long junction behavior
for T < T∗ with an exponential T -dependence Ic ∝ exp

(
− kBT/δ

)
, where kB is the Boltzmann

constant. The extracted characteristic energy-scale δ is found to be an order of magnitude smaller
than the induced superconducting gap of the junction. We attribute the long-junction behavior with
such a small δ to low-energy Andreev bound states (ABS) arising from winding of the electronic
wavefunction around the circumference of the topological insulator nanoribbon (TINR).

Three-dimensional (3D) topological insulators (TI) are
characterized by insulating bulk and non-trivial conduct-
ing surface states, where the spin is helically locked per-
pendicular to the momentum, and the carriers are mass-
less Dirac fermions with linear energy-momentum dis-
persion [1–3]. Theoretical work by Fu and Kane [4] has
predicted that, once coupled to an s-wave superconduc-
tor, the surface states of TI’s can undergo unconventional
superconducting pairing, which can provide a useful plat-
form to study exotic phenomena such as topological su-
perconductivity and Majorana fermions [2, 4]. In con-
trast to the conventional spin-singlet superconductivity,
the induced superconductivity in the surface states of a
3D TI [4] is a mixture of singlet and triplet pairings due to
the lifted spin degeneracy [5–7]. Furthermore, Andreev
bound states (ABS) formed within a superconductor-TI-
superconductor (S-TI-S) Josephson junction (JJ) can ex-
hibit a robust zero-energy crossing when the phase dif-
ference between the two superconductors is π, giving rise
to Majorana modes [4, 6]. Possible probes of topolog-
ical superconductors/junctions may include the tunnel-
ing spectroscopy, the current-phase relation (CPR), and
temperature dependence of the critical current [8–13].

In recent years, S-TI-S JJ’s with two- and three-
dimensional TI’s have been extensively studied. Gate-
tunable supercurrent and Josephson effects have also
been observed [14–29]. However, in many of the devices
studied so far, the bulk of the TI can have notable con-
tributions to the transport properties of the junction and
make it difficult to separate out the contribution of the
surface states.

In this work, we use the topological insulator
BiSbTeSe2 with a distinct advantage that at low tem-

peratures the bulk is insulating and only the surface
states contribute to electrical transport [29–31]. We
obtain nanoribons of BiSbTeSe2 using the exfoliation
technique and fabricate superconductor-(TI nanoribon)-
superconductor (S-TINR-S) JJ’s. Due to the enhanced
surface to volume ratio, uniform cross-sectional area, and
relatively small size, TINR-based devices are an excel-
lent platform to study topological transport, exhibiting
ballistic conduction and π-Berry-phase Aharonov-Bohm
effects [32–34], and are also predicted to be promising
for study of topological superconductivity [35, 36]. In
our TINR-based JJ’s, in contrast to conventional junc-
tions, we observe a sharp upturn of the critical current Ic
for temperatures T below ∼ 20% of the junction critical
temperature Tc. Interestingly, this upturn temperature
(∼ 0.2Tc) is observed in a variety of JJ’s with different
gate voltages Vg’s. We interpret the experimental results
using a phenomenological model for junctions based on
TINR’s. This model relates the enhancement of Ic at low
temperatures to the ABS whose energy scale is around
an order of magnitude smaller than the induced super-
conducting gap. The reduced energy scale of the ABS is
attributed to the winding of their wavefunction around
the circumference of the TINR. Such ABS are in the
long junction limit and give rise to an exponential en-
hancement of Ic with decreasing T . Furthermore, we ob-
serve a sinusoidal current-phase relation (CPR) measured
using an asymmetric superconducting quantum interfer-
ence device (SQUID), consistent with the expectation for
these samples at our measurement temperature.

We study a variety of TINR JJ’s with Niobium (Nb) as
the superconductor, details regarding device fabrication
and sample parameters can be found in the supplemental
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information (SI) [37]. We have previously observed large
IcRN product (where RN is the normal-state resistance)
and multiple Andreev reflections in such TINR JJ’s [29],
demonstrating the high quality of the junctions includ-
ing the Nb-TINR interface. Inset of Fig. 1b depicts an
atomic force microscope (AFM) image of a representative
S-TINR-S junction (sample 1).

Fig. 1a shows the ambipolar field effect in the two-
terminal resistance R vs. Vg measured in sample 1 at T =
14.5 K, above Tc of Nb. By varying Vg, the carrier type in
the TINR can be changed from n-type to p-type, and the
chemical potential can be tuned into the bulk bandgap
to be in the TSS. The gate voltage where the maximum
of R vs. Vg occurs represents the charge neutrality point
(CNP) which is VCNP ∼ −15 V for this sample.

The junction Tc ∼ 0.5 - 2.2 K, the temperature be-
low which the junction resistance vanishes, is much lower
than the Tc of Nb (TNbc ∼ 7.5 K) in our JJ’s. The DC
voltage Vdc vs. the DC current Idc, measured in sample
1 when sweeping Idc from -300 nA to 300 nA at T = 20
mK for a few different Vg’s is plotted in Fig. 1b. When
Idc is small, the voltage across the junction is zero, in-
dicating that the junction is in its superconducting state
and supports a supercurrent (Idc). However, once the
current is increased above some critical current (defined
as Ic, marked by the arrow for the Vg = -20 V curve),
the junction leaves the superconducting state and transi-
tions to the normal state with a finite voltage drop. Fig.
1c shows the color map of the two-terminal differential
resistance dV/dI vs. Vg and Idc (swept from 0 to 300
nA) at T = 20 mK. The solid white line in this figure
marks the critical current Ic of the junction. Notably, we
observe that Ic exhibits an ambipolar field effect (which
has not been realized in previous devices [22, 23, 29]) and
reaches a minimum of ∼ 120 nA near VCNP ∼ −15 V,
consistent with the peak in R vs. Vg measurement (Fig.
1a).

Fig. 2a shows the T -dependence of Ic for three differ-
ent Vg’s in sample 1. Starting from Tc, Ic increases with
decreasing T . Notably, we observe an anomaly in Ic vs.
T at an upturn temperature (T∗ ∼ 0.36 K marked for the
Vg = 45 V dataset with Tc ∼ 2.2 K as an example), be-
low which Ic increases sharply and eventually reaches its
largest value Imaxc at the lowest accessible temperature
(T ∼ 20 mK). The normalized Ic/I

max
c vs. the normal-

ized T/Tc for this sample is depicted in Fig. 2b. Inter-
estingly, T∗ is always ∼ 0.2Tc for this sample regardless
of Vg. Fig. 2c plots Ic/I

max
c vs. T/Tc for five different

samples, with each sample measured at a few Vg’s. We
observe that T∗/Tc remains ∼ 0.2 for all our TINR-based
JJ’s, regardless of their Tc and Vg (see Table S1 in the SI
[37]). Noteworthy, we observe an exponential enhance-
ment of Ic with decreasing T for T < T∗ as highlighted
by the solid red lines in Fig. 2b and c.

The anomalous temperature dependence of Ic observed
in our samples is radically different from that of con-

ventional JJ’s. While the T -dependence of our Ic for
T∗ < T < Tc maybe described by the behavior of a TI-
based short junction (e.g., solid blue line in Fig. 2b, as
discussed more in our model presented below), Ic of such
short junctions is not expected to exhibit any exponential
behavior before it saturates at low temperatures [6, 10].
However, for long junctions, Ic increases exponentially
with decreasing temperature [38–42] before its eventual
saturation at the low temperature limit. Therefore, the
increase in Ic vs. decreasing T for T∗ < T < Tc followed
by an exponential enhancement of Ic for T < T∗ as ob-
served in Fig. 2b suggests that Ic in our samples may
be dominated by a short junction behavior for T > T∗
and a long junction behavior for T < T∗. Such a transi-
tion from short to long junction behaviors may be related
to the nature of the TSS in the TINR. Because, the TSS
extend over the entire circumference of the TINR, the su-
perconducting transport is carried by modes on both the
top (corresponding to I1 depicted in the inset of Fig. 2b)
and bottom (corresponding to I2 depicted in the inset of
Fig. 2b) surfaces of the TINR, i.e., the total supercurrent
I = I1 + I2.

For the TINR with a circumference C = 2W + 2t, the
transverse momentum ky, perpendicular to the current,
is quantized as ky = 2π

C (n + 1/2), where n is an inte-
ger [43, 44]. Also note in our TINR the current flows
between the superconducting contacts fabricated on the
top surface. Therefore, the modes with ky ∼ 0 remain
on the top surface and contribute to I1, while the modes
with |ky| � 0 extend around the perimeter of the TINR
and contribute to I2. We note that the ky = 0 mode is
prohibited in the TINR.

The modes (corresponding to I1) on the top surface
travel a short distance L, the separation between the two
Nb contacts, and are supposedly in the short-junction
limit. We found our experimental data of Ic vs. T
for T > T∗ can be described using the temperature-
dependent supercurrent calculated for a ballistic short
junction [6, 10, 39], given by:

I1(φ, T ) = N1
eπ∆(T )

h
sin(

φ

2
) tanh

(∆(T ) cos
(
φ
2

)
2kBT

)
, (1)

where h is the Plank constant, kB is the Boltzmann con-
stant, e is the electron charge, N1 is the number of modes
in the top surface, φ is the phase difference between the
two superconductors, and ∆(T ) is the induced supercon-
ducting gap. We assume a BCS temperature dependence
for ∆(T ) with ∆(T = 0) = ∆0 = 1.76kBTc [45]. We
obtain the critical current Ic1(T ) by maximizing I1(φ, T )
over φ as:

Ic1(T ) = max
φ

(
I1(φ, T )

)
. (2)

We have plotted Ic1(T ) calculated from Eq. (2) to ob-
tain the solid blue curve in Fig. 2b. The computed
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FIG. 1. (a) Two-terminal R vs. Vg measured at T = 14.5 K, above the critical temperature TNbc = 7.5 K of the Nb electrodes.
Shaded regions highlight n and p doping of TINR. (b) Vdc vs. Idc for different Vg’s at T = 20 mK. Inset: AFM image of sample
1 (from which all data in this figure are measured), a TI (BiSbTeSe2) nanoribbon Josephson device with superconducting Nb
electrodes. Scale bar is 0.5 µm. (c) Color map of the two-terminal dV/dI vs. Vg and Idc at T = 20 mK. An AC excitation
current Iac = 1 nA was used for the dV/dI measurement. Solid white line marks the junction critical current Ic vs. Vg. Data
in (b-c) is measured by sweeping Idc from -300 nA to 300 nA.
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FIG. 2. (a) Temperature dependence of Ic for different Vg’s for sample 1. (b) Normalized Ic/I
max
c vs. normalized T/Tc for data

in (a) in log-linear scale. The solid blue line is the normalized Ic1/I
max
c1 (Eq. 2) divided by factor 2.2 and the solid red line is a

fit to exp(− kBT
δ

) with δ ∼ 0.08∆. The symbols have the same legends as in (a). Inset: cartoons of the TINR JJ depicting the
current I1 corresponding to the modes on the top surface and the current I2 corresponding to the modes that extend around
the circumference and flow through the bottom surface. (c) Ic/I

max
c vs. T/Tc in a log-linear scale for five different TINR-based

Josephson devices measured at a few (1-3) Vg’s for each device. The exponential fit and the experimental data in (b) are also
included in this plot as the solid red line and black symbols, respectively.

Ic1(T )/Imaxc1 , where Imaxc1 = Ic1(T = 0), is divided by
2.2 in order to show its agreement with experimental re-
sults for T > T∗ in the normalized version of Ic/I

max
c in

Fig. 2b (this indicates Ic1 on the top surface contributes
nearly half of the total Ic at the low temperature limit).

In contrast, the modes (corresponding to I2) flowing
through the bottom surface extend over the entire cir-
cumference (C ∼ 700 nm for sample 1 shown in Fig. 2a
and b) of the TINR (through the side surface) and hence
travel a longer distance d (d ≥ C � L). We assume such
modes are in the ballistic long-junction limit with d ≥ ξ,
where ξ = ~vF /∆ ∼ 640 nm is the superconducting co-
herence length of the junction and vF = 3 × 105 m/s is
the Fermi velocity. As a result, we observe a reduced
energy gap δ = ~vF /2πd for these modes [39, 42, 46–48].
In the limit of Tsat < T < T∗, where Tsat � δ/kB is the
temperature below which Ic saturates, the critical cur-

rent of these modes exhibits an exponential dependence
on T , i.e. Ic ∝ exp(−kBT/δ) [39, 42, 46–48]. This ex-
ponential dependence is seen in the experimental data in
Fig. 2b. To extract δ, we perform an exponential fit to
Ic for Tsat < T < T∗ (where we take Tsat ∼ 0.04Tc) as
depicted by the solid red line in Fig. 2b. The fit gives
δ ∼ 0.08∆, corresponding to d = ~vF

2πδ ∼ 1.2 µm, which
is quite close to ∼ ξ + C. We have found similar trends
for the extracted d ∼ C + ξ in other samples shown in
Fig. 2c (see also Fig. S2d [37]). We suggest that when
the effective length d is on the order of ξ, the extracted
δ should be proportional to 1/(C + ξ) rather than 1/C
(thus d should be closer to C + ξ rather than C). This
reduced δ is also consistent with the discussions in Ref.
[42]. To highlight the influence of ξ on δ (and T∗), we
have plotted δ and T∗ vs. 1/(C + ξ) in Fig. S2b [37].
Consistent with our expectation, we observe that δ (and
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T∗) increases with increasing 1/(C + ξ).

We can extract N1 ∼ 1-5 for different samples from the
fit of Ic1 as determined by Eq. (2) to the experimental
results. The extracted value of N1 is much smaller than
the estimated total number of modes N = kFC/2π ∼
24-114, where kF =

√
4π

Cg

e (Vg − VCNP ) is the Fermi

wave vector and Cg= 12 nF/cm2 is the parallel plate ca-
pacitance per unit area of a 300-nm SiO2. Furthermore,
we can estimate the number of modes N2 corresponding
to I2 as N2 = N − N1 ∼ (10 − 20)N1. This suggests
that the majority of the modes in our TINRs are go-
ing around the circumference and through the bottom
surface to contribute to I2, consistent with the expec-
tation that only modes with ky near zero contribute to
I1. We note that Ic at the lowest T is proportional to
the number of modes and the energy scale of the ABS in
both the long and short junction limits (i.e. the low-T I1
and I2 are proportional to N1∆0 and N2δ, respectively).
The extracted large N2 ∼ (10 − 20)N1 and the small
δ ∼ 0.1∆0 imply that the contribution of I1 and I2 to
the total critical current at low T should be comparable,
which is consistent with our experimental observations
in Fig. 2b and c. For instance, Ic1 represented by the
solid blue line in Fig. 2b approaches ∼ 50% of the total
Ic when extrapolated to the lowest T .

In the above phenomenological model, we have used
one effective reduced gap δ to describe all the modes
flowing around the circumference and through the bot-
tom surface. However, in reality these modes can have
different gaps depending on how far they travel between
the two superconductors. Currently there is no theory
for the temperature dependence of Ic specific to TINR
(considering the wrapping of the electronic wavefunction
around the circumference). Further studies are required
to fully understand the nature of the induced supercon-
ductivity in this system.

We have measured the CPR (supercurrent I vs. phase
φ) in our TINR junction at T = 20 mK using an asym-
metric SQUID based on our TINR junction in paral-
lel with a reference junction [37, 49, 50]. Fig. 3a de-
picts a scanning electron microscope (SEM) image of the
SQUID. The measured CPR (symbols) is shown in Fig.
3b alongside a sinusoidal function (black curve), which
describes well the measured CPR.

It has been predicted that in a TI flake, regardless of
the barrier height Z imposed by a non-magnetic impu-
rity, ky = 0 mode will have a transmission probability D
= 1 and will give rise to a highly skewed CPR [6]. How-
ever, in the TINRs, the ky = 0 mode is strictly prohib-
ited. Effectively, the small transverse size of the TINR
generates a gap in the TSS spectrum, making the sys-
tem more sensitive to disorder and rendering the CPR
more sinusoidal. For ky 6= 0, D depends on Z and is not
necessarily 1, thus CPR is not necessarily highly skewed.
Furthermore, in our SQUID-based measurement, we need
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-1

-0.5

0

0.5

1

1.5

I /
 I c
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TINR(a) (b)

FIG. 3. (a) False-colored scanning electron microscope image
of an asymmetric SQUID used to measure the current-phase
relations (CPR) in our TINR-based JJ’s. (b) Normalized cur-
rent I/Ic vs. normalized flux ∆Φ/Φ0, where Φ0 = h/2e is the
flux quanta, at Vg = 20 V and T = 20 mK. As the absolute
value of the flux inside the superconducting SQUID is un-
known, the experimental curve is shifted along the horizontal
axis for comparison with a sinusoidal function.

to ensure that the current through the reference junction
(part of our SQUID device) is sufficient to drive it to
the normal state. Since Ic of the reference junction is
on the order of 10 to 20 µA (compared to Ic ∼ 20-200
nA in the TINRs), the electron temperature in the CPR
measurement could be substantially larger compared to
that in the Vdc-Idc measurements (used to extract Ic).
Additionally, our TINRs are very sensitive to tempera-
ture and show a strong asymmetry between their critical
current Ic and return current Ir (see Fig. S3 and SI for
more details [37]) due to the Joule heating (caused by
Idc). Overall, the sensitivity to disorder for modes with
ky 6= 0 as well as the increased electron temperature due
to the large Ic of the reference junction may result in si-
nusoidal CPR in our TINR-based JJ’s measured in the
SQUID setup.

In this paper, we present transport measurements of
the JJ’s based on nanoribbons of the bulk-insulating
topological insulators BiSbTeSe2 with superconducting
Nb contacts. We experimentally find an anomalous be-
havior in the T-dependence of Ic in a variety of junc-
tions with different Tc and Vg’s. For all samples, Ic in-
creases with decreasing temperature from Tc to an up-
turn temperature (∼ 0.2Tc), followed by an exponential
increase with further decrease of the temperature. To
understand our results, we introduce a phenomenological
model based on the winding of the ABS around the cir-
cumference of the TINR. Our model relates the enhance-
ment of Ic at low temperatures to the anomalously small
energy scale of ABS in the long-junction limit. Further-
more, our measured CPR shows a sinusoidal behavior,
consistent with the expectation for such long JJ’s under
the experimental conditions. Our experimental observa-
tions indicate that our TINR junctions can be promising
platforms for further exploration of topological supercon-
ductivity and Majorana fermions predicted in such sys-
tems [4].
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